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Abstract 

In most multiple-choice tests using confidence based marking (CBM), a discrete 
certainty scale is applied, often with three or four probability intervals of equal 
length. In this paper we derive a continuous certainty scale for CBM which we think 
circumvents the alleged complexity that would be inherent in a continuous scale. In 
our approach, the examinee, given a correct answer, is awarded the same number of 
points as her reported degree of confidence that her chosen alternative is the correct 
answer, i.e., the examinee’s uncertainty is directly reflected in terms of the number 
of points achieved if the answer is correct. We test our continuous scoring scheme 
in an examination in basic statistics at our university. The results indicate that most 
students are quite good at assessing their confidence levels, but students tend on 
average to overrate their confidence for high levels of stated confidence and 
underrate their confidence for low levels of stated confidence. 
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1. Introduction 

One testing format that increases the information obtained from responses on multiple-choice 

(MC) tests is certainty-based (confidence-based) marking (CBM). Given the alternative that the 

examinee chooses as her answer, she is asked to state how certain she is that the chosen answer 

is the correct answer. Depending on the examinee’s stated certainty, she will be rewarded with 

different points if the answer is correct and potentially penalized if the answer is incorrect. If 

no alternative is chosen, the examinee obtains zero points. Although the method has a history 

dating back almost hundred years (see Esternacht, 1972 for a review), CBM is used to a lesser 

extent than the standard setting of multiple choice questions – in which just the number of 

correct answers is counted (Kanzow et al., 2023). Nevertheless, CBM is applied today in a 

variety of educational programs, e.g. medicine, law, foreign language, engineering (see 

Remesal et al., 2024 for a list of previous studies). A point of departure when formulating the 

scoring function is that the examinee has an incentive to honestly reveal her certainty, that is, 

the examinee’s own personal probability, that the selected alternative is the correct answer, 

equals her reported certainty. The scoring function consists of two parts, where the first part 

specifies the achieved points in case the chosen alternative is correct, whereas the second part 

specifies the penalty if the examinee selects a wrong answer. Most of the literature analyzing 

the outcome from CBM tests, reports the use of a scoring matrix, in which the examinee faces 

a predetermined number of certainty or confidence levels which correspond to a finite number 

of probability intervals, in general four to five discrete intervals (e.g. Garder-Medwin, 2007; 

Barr & Burke, 2013; Remesal et al., 2024). For an incorrect answer, the penalty is often set to 

zero if the examinee reports the lowest level of confidence. The penalty then increases with a 

higher reported level of confidence, given that the answer is incorrect. The outcome from a row 

of empirical tests of CBM shows a high correlation between the number of correct answers and 

the achieved CBM score (e.g., Barr & Burke, 2013; Smrkolj et al., 2022; Wu et al., 2022). 

To our best knowledge, very few studies have applied a continuous scoring scheme. In an 

empirical study comparing different measures of partial knowledge in multiple-choice tests, 

Ben-Simon et al. (1997) apply a continuous confidence marking scheme – ranging from 

“complete confidence” to “random guess” - where examinees were awarded or penalized with 

the same points as their attached confidence to the selected response. However, such a scoring 

scheme is not compatible with decision theory, i.e., it does not imply honest confidence 

revelation is the best strategy. In a theoretical contribution, Boldt (1971) derives a continuous 

scoring function which is quadratic in the reported confidence level where the examinee’s 
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expected score is monotonically increasing as confidence increases. The expected score is 

maximized when the examinee’s reported confidence coincides with the true probability of 

giving a correct answer. In order to make his method more tractable, Boldt transforms the 

recorded responses into a discrete rating system.    

In this paper we derive and analyze theoretical implications of a continuous score function for 

CBM which is similar to that by Boldt (1971). The important difference is that in our approach, 

the examinee, given a correct answer, is awarded the same number of points as her reported 

degree of confidence that her chosen alternative is the correct answer. Hence, our method is 

transparent in the sense that the examinee’s uncertainty is directly reflected in terms of the 

number of points achieved if the answer is correct. The penalty for an incorrect answer follows 

from two conditions, the first-order condition of the expected score being maximized when the 

examinee reports her true probability and also the condition that the expected score is to equal 

zero provided the examinee takes a chance on an answer when she is actually totally ignorant, 

yet honest about her ignorance. We compare the properties of our scoring scheme with that of 

the standard negative marking method, a commonly applied scoring scheme in examinations 

with multiple choice questions. In this scheme a correct answer is rewarded by one point, while 

an incorrect answer is punished by 1
𝑘𝑘−1

 points, k being the number of alternative answers. No 

answer gives zero points. This is a method directly comparable to the method developed in this 

paper.  

 We also report on the results from an examination in basic statistics at our university in which 

we apply our continuous scoring scheme. In addition, a method is developed to decompose total 

score on the exam into two parts, degree of knowledge and self-awareness.  

We organize the rest of the paper as follows. In Section 2 the new scoring system is derived. 

Section 3 provides a theoretical comparison of characteristics between the new system and 

traditional scoring systems. In section 4 the practical implementation of the new system is 

described and analyzed. Section 5 ends the paper with conclusions and a discussion.  

 

2. A Continuous Scoring Function  

In this section a system for scoring multiple choice questions is modeled and analyzed 

theoretically. The system is modeled to give the examinee incentives to reveal her confidence 

in the answer, in terms of her perceived probability of her answer being correct.  
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2.1 Framework and derivation 

Consider a multiple-choice question with 𝑘𝑘 ≥ 2 alternatives of which only one is correct. The 

examinee has the option of not answering the question by choosing no alternative, resulting in 

zero points on the question. The other option is to give an answer by picking one of the 

alternatives while reporting her level of confidence. Let 𝑥𝑥𝑘𝑘 be this reported level of confidence, 

where 1
𝑘𝑘
≤ 𝑥𝑥𝑘𝑘 ≤ 1. The lower limit corresponds to the probability that a wild guess, because 

knowledge is completely lacking, will give a correct answer. If the answer is correct, she gets 

𝑥𝑥𝑘𝑘 points, while a wrong answer yields 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘) points. The reward by 𝑥𝑥𝑘𝑘 points is justified by 

the fact that the value of being correct increases by the level of significance. Also, to discourage 

the examinee from reporting an overestimate of the perceived level,  𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘) is expected to be 

decreasing. Thus, for an incorrect answer, the larger value of 𝑥𝑥𝑘𝑘, the larger point deduction the 

examinee receives. 

We also define 𝑝𝑝𝑘𝑘 to be the true probability of giving a correct answer. To grasp the concept of 

𝑝𝑝𝑘𝑘 we define 𝑞𝑞𝑘𝑘 as the perceived probability of the examinee’s answer being correct, possibly 

different from the reported confidence 𝑥𝑥𝑘𝑘. The definition of 𝑝𝑝𝑘𝑘 is conditioned on 𝑞𝑞𝑘𝑘 in the 

following sense. Suppose there is a bank of many questions, from which the examiner draws a 

random sample of questions, constituting an exam. If the examinee were faced with all 

questions in the bank, she is assumed to have a perceived probability of her answer being correct 

to each question in this bank. We think of 𝑝𝑝𝑘𝑘 as the proportion of correct answers to questions 

where the examinee has a perceived level of confidence equal to 𝑞𝑞𝑘𝑘. 

Moreover, we define the random variable 𝑌𝑌𝑘𝑘, the achieved number of points on the question 

given an answer. Making use of our introduced notation, the probability function is illustrated 

in Table 1.  

 

Table 1.  The probability function of 𝑌𝑌𝑘𝑘 

𝑦𝑦𝑘𝑘 𝑃𝑃(𝑌𝑌𝑘𝑘 = 𝑦𝑦𝑘𝑘) 

𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘)  1 − 𝑝𝑝𝑘𝑘 

𝑥𝑥𝑘𝑘 𝑝𝑝𝑘𝑘 

 

Now, the expected number of achieved points, 𝐸𝐸(𝑌𝑌𝑘𝑘), can be written as 
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𝐸𝐸(𝑌𝑌𝑘𝑘) = 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘) (1 − 𝑝𝑝𝑘𝑘) + 𝑥𝑥𝑘𝑘𝑝𝑝𝑘𝑘. 

 

While 𝑝𝑝𝑘𝑘 is fixed at the time of the examination, the value of 𝑥𝑥𝑘𝑘, the reported confidence is not. It is 

chosen by the examinee, a choice that will affect the expected number of points. Since it is valuable 

information for the examiner to know the examinee’s perceived probability 𝑞𝑞𝑘𝑘 , for 𝑥𝑥𝑘𝑘 to come close to 

𝑞𝑞𝑘𝑘, we define 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘) to be a function such that 𝐸𝐸(𝑌𝑌𝑘𝑘) is maximized for 𝑥𝑥𝑘𝑘 = 𝑝𝑝𝑘𝑘. We note that, although 

the examinee faced with this criterion has strong incentives to indicate the true perception about 𝑝𝑝𝑘𝑘, this 

does not necessarily mean 𝑥𝑥𝑘𝑘 will be close to the true probability 𝑝𝑝𝑘𝑘. The perception might be wrong, 

the examinee might for example overrate her confidence level. Nevertheless, to find such a function, 

that rewards examinees whose reported confidence 𝑥𝑥𝑘𝑘 is close to the true probability 𝑝𝑝𝑘𝑘, the first order 

condition is derived. We get 

 

�𝑑𝑑𝑑𝑑(𝑌𝑌𝑘𝑘)
𝑑𝑑𝑥𝑥𝑘𝑘

�𝑥𝑥𝑘𝑘 = 𝑝𝑝𝑘𝑘
� = 𝑓𝑓𝑘𝑘′(𝑝𝑝𝑘𝑘) (1− 𝑝𝑝𝑘𝑘) + 𝑝𝑝𝑘𝑘 = 0. 

Solving for 𝑓𝑓′(𝑝𝑝𝑘𝑘), we have 

𝑓𝑓𝑘𝑘′(𝑝𝑝𝑘𝑘) = −
𝑝𝑝𝑘𝑘

1 − 𝑝𝑝𝑘𝑘
. 

Thus, the derivative of the function we are looking for is given by 

 

𝑓𝑓𝑘𝑘′(𝑥𝑥𝑘𝑘) = −
𝑥𝑥𝑘𝑘

1 − 𝑥𝑥𝑘𝑘
, 

 

and we can solve for the function 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘)  by integration. We get 

 

𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘)  = �𝑓𝑓𝑘𝑘′(𝑥𝑥𝑘𝑘)𝑑𝑑𝑥𝑥𝑘𝑘 = −�
𝑥𝑥𝑘𝑘

1 − 𝑥𝑥𝑘𝑘
𝑑𝑑𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘 + ln(1 − 𝑥𝑥𝑘𝑘) + 𝐶𝐶𝑘𝑘. 

 

To solve for the constant 𝐶𝐶𝑘𝑘, we consider an examinee with simply no knowledge about the question 

asked. If the examinee after all chooses to answer the question, it is reasonable for 𝐸𝐸(𝑌𝑌𝑘𝑘) to equal zero 
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given an awareness and honesty of total ignorance of the question, i.e., given 𝑥𝑥𝑘𝑘 = 𝑝𝑝𝑘𝑘 = 1
𝑘𝑘
. We get the 

restriction 

�𝐸𝐸(𝑌𝑌𝑘𝑘) �𝑥𝑥𝑘𝑘 = 𝑝𝑝𝑘𝑘 =
1
𝑘𝑘
� = 𝑓𝑓𝑘𝑘 �

1
𝑘𝑘
� ∙ (1 −

1
𝑘𝑘

) +
1
𝑘𝑘
∙

1
𝑘𝑘

= 0. 

 

Solving for 𝑓𝑓 �1
𝑘𝑘
�, we have 

𝑓𝑓𝑘𝑘 �
1
𝑘𝑘
� = −

1
𝑘𝑘(𝑘𝑘 − 1). 

Now,  

𝑓𝑓𝑘𝑘 �
1
𝑘𝑘
� =  

1
𝑘𝑘

+ ln �1−
1
𝑘𝑘
� + 𝐶𝐶𝑘𝑘 = −

1
𝑘𝑘(𝑘𝑘 − 1), 

and 𝐶𝐶𝑘𝑘 is given by 

𝐶𝐶𝑘𝑘 = ln �
𝑘𝑘

𝑘𝑘 − 1
� −

1
𝑘𝑘 − 1

. 

As can been seen above, 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘) is not being defined for 𝑥𝑥𝑘𝑘 = 1. i.e., a 100 percent reported confidence 

in the answer being correct. Note that lim
𝑥𝑥𝑘𝑘→1

( 𝑥𝑥𝑘𝑘 + ln(1 − 𝑥𝑥𝑘𝑘) + 𝐶𝐶𝑘𝑘) = −∞ . A system where some 

examinees, indicating a confidence of 100 percent in the answer being correct, are punished with an 

infinitely large point deduction if their answer is incorrect, would of course be difficult to implement.  

To address the problem, to begin with, we believe it is reasonable to limit the accuracy with which the 

examinee may indicate her perceived probability to two decimal places. Now, we are looking for values 

𝑓𝑓𝑘𝑘(1) such that an examinee being 99 percent confident, still would indicate 𝑥𝑥𝑘𝑘 = 0.99 rather than 𝑥𝑥𝑘𝑘 =

1.00 to maximize her perceived expected number of points on the question. The requirement 

 

(𝐸𝐸(𝑌𝑌𝑘𝑘)|𝑥𝑥𝑘𝑘 = 𝑝𝑝𝑘𝑘 = 0.99) > (𝐸𝐸(𝑌𝑌𝑘𝑘)|𝑥𝑥𝑘𝑘 = 1,𝑝𝑝𝑘𝑘 = 0.99) 

 

can be written as 

 

𝑓𝑓𝑘𝑘(0.99) ∙  (1 − 0.99) + 0.99 ∙ 0.99 > 𝑓𝑓𝑘𝑘(1)(1 − 0.99) + 1 ∙ 0.99. 

 

Solving for 𝑓𝑓𝑘𝑘(1), we have 
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𝑓𝑓𝑘𝑘(1) <  𝑓𝑓𝑘𝑘(0.99) −  0.99. 

 

To keep it simple, we define 𝑓𝑓𝑘𝑘(1) to be the largest (negative) integer satisfying the above inequality. 

Thus, provided 𝑓𝑓𝑘𝑘(0.99) −  0.99 is not an integer1, we have 

 

𝑓𝑓𝑘𝑘(1) =  𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑓𝑓𝑘𝑘(0.99)−  0.99). 

 

To summarize, 

𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘) = �𝑥𝑥𝑘𝑘 + ln(1 − 𝑥𝑥𝑘𝑘) + ln �
𝑘𝑘

𝑘𝑘 − 1
� −

1
𝑘𝑘 − 1

, 𝑥𝑥𝑘𝑘 = 𝑎𝑎,𝑎𝑎 + 0.01,𝑎𝑎 + 0.02, … ,0.99,

𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑓𝑓𝑘𝑘(0.99)− 0.99), 𝑥𝑥𝑘𝑘 = 1,
 

 

where  𝑎𝑎 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐�100𝑘𝑘 �

100
. 2 

Also, a maximum is assured since  

�𝑑𝑑
2𝐸𝐸(𝑌𝑌𝑘𝑘)
𝑑𝑑𝑥𝑥𝑘𝑘2

�𝑥𝑥𝑘𝑘 = 𝑝𝑝𝑘𝑘
� = − 1

1−𝑝𝑝𝑘𝑘
< 0 for 𝑝𝑝𝑘𝑘 < 1. 

This fulfilled condition finalizes the derivation part. Next, the properties of the proposed system will be 

examined. 

2.2 Properties 

Consider Figure 1 conditioning on the case where 𝑘𝑘 = 4. It shows possible outcomes on the 

achieved number of points 𝑌𝑌4 given the reported confidence 𝑥𝑥4. The upper graph shows number 

of points achieved if the answer is correct for different values of 𝑥𝑥4, simply the identity function, 

while the lower graph depicts 𝑓𝑓4(𝑥𝑥4), the negative number of points achieved given an incorrect 

answer as a function of 𝑥𝑥4. Conditional on an incorrect answer, there is an increasing negative 

effect of 𝑥𝑥4 on 𝑦𝑦4, with the lowest possible value of −5 attained at 𝑥𝑥4 = 1.  

 
1 For feasible values of 𝑘𝑘 the value 𝑓𝑓𝑘𝑘(0.99) −  0.99 is not an integer. 
2 For some 𝑘𝑘, for example 𝑘𝑘 = 3, 𝑥𝑥 = 1

𝑘𝑘
 is not allowed when limiting the accuracy of 𝑥𝑥𝑘𝑘 to two decimal places. 
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Figure 1. Possible outcomes 𝑦𝑦4 and expected number of achieved points 𝐸𝐸(𝑌𝑌4| 𝑥𝑥4 = 𝑝𝑝4) for 

different values of reported confidence level 𝑥𝑥4. Achieved points given a correct answer are 

represented by small dots, points given an incorrect answer 𝑓𝑓4(𝑥𝑥4) by medium-sized dots and 

expected number of points by large dots. 

Similar patterns hold for other values of 𝑘𝑘 = 4 and are therefore not depicted graphically, 

although in Table 2 values of 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘) and 𝐸𝐸(𝑌𝑌𝑘𝑘| 𝑥𝑥𝑘𝑘 = 𝑝𝑝𝑘𝑘), respectively, are shown for selected 

values of  𝑥𝑥𝑘𝑘 for 𝑘𝑘 = 2, 3, 4. 

From Table 2, for values of 𝑥𝑥𝑘𝑘 corresponding to no knowledge of which alternative being 

correct, we also note a decrease in point deduction for incorrect answers with 𝑘𝑘. We have 

𝑓𝑓2(0.5) = −0.5, 𝑓𝑓3(0.34) = −0.17 and 𝑓𝑓4(0.25) = −0.08. 
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Table 2. A selection of points �𝑥𝑥𝑘𝑘,𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘)� and 𝐸𝐸(𝑌𝑌𝑘𝑘| 𝑥𝑥𝑘𝑘 = 𝑝𝑝𝑘𝑘), respectively, for different 

values of 𝑥𝑥𝑘𝑘 for 𝑘𝑘 = 2, 3, 4. 

 

𝑥𝑥𝑘𝑘  𝑓𝑓2(𝑥𝑥2) 𝐸𝐸(𝑌𝑌2| 𝑥𝑥2 = 𝑝𝑝2) 𝑓𝑓3(𝑥𝑥3) 𝐸𝐸(𝑌𝑌3| 𝑥𝑥3 = 𝑝𝑝3) 𝑓𝑓4(𝑥𝑥4)  𝐸𝐸(𝑌𝑌4| 𝑥𝑥4 = 𝑝𝑝4)  

0.25      -0.08  0.00  
0.30      -0.10  0.02  
0.34    -0.17 0.00 -0.12  0.04  
0.40    -0.21 0.04 -0.16  0.07  
0.45    -0.24 0.07 -0.19  0.10  
0.50  -0.50 0.00 -0.29 0.11 -0.24  0.13  
0.55  -0.56 0.05 -0.34 0.15 -0.29  0.17  
0.60  -0.62 0.11 -0.41 0.20 -0.36  0.22  
0.65  -0.71 0.18 -0.49 0.25 -0.45  0.27  
0.70  -0.81 0.25 -0.60 0.31 -0.55  0.33  
0.75  -0.94 0.33 -0.73 0.38 -0.68  0.39  
0.80  -1.12 0.42 -0.90 0.46 -0.86  0.47  
0.85  -1.35 0.52 -1.14 0.55 -1.09  0.56  
0.90  -1.71 0.64 -1.50 0.66 -1.45  0.67  
0.95  -2.35 0.78 -2.14 0.80 -2.09  0.80  
0.98  -3.23 0.90 -3.03 0.90 -2.98  0.90  
0.99  -3.92 0.94 -3.71 0.94 -3.66  0.94  
1.00  -5.00 1.00 -5.00 1.00 -5.00  1.00  

 

Recall that to get a close estimate of the perceived probability through the reported confidence, 

our system rewards examinees where this reported 

 value is close to the true probability of a correct answer. Therefore, it is of interest to examine 

the difference in expected achieved points for various degrees of deviation from the true 

probability. In Figure 2 the expected achieved points as a function of 𝑝𝑝4 is illustrated for various 

degrees of underestimation of one’s ability to answer correctly. The dashed line corresponds to 

the case where the indicated perceived probability 𝑥𝑥4 coincides with the true probability 𝑝𝑝4, 

while the other four cases from the top down correspond to growing underestimation, here 𝑥𝑥4 −

𝑝𝑝4 = −0.05,−0.1,−0.2,−0.3. 
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Figure 2. 𝐸𝐸(𝑌𝑌4| 𝑥𝑥4) as a function of 𝑝𝑝4 for different negative deviations of 𝑥𝑥4 from 𝑝𝑝4. The dashed line 

corresponds to the case where 𝑥𝑥4 = 𝑝𝑝4, while the other four cases from the top down correspond to 

𝑥𝑥4 − 𝑝𝑝4 = −0.05,−0.1,−0.2,−0.3. 

The ideal case in terms of maximizing the expected number of achieved points, i.e., 𝑥𝑥4 = 𝑝𝑝4, 

serves as the benchmark when comparing the effect of underestimating one’s ability. For a 

given value of 𝑝𝑝4, the expected number of points decreases as the underestimation increases. 

For example, for 𝑝𝑝4 = 0.9 the expected number of points is 0.67 provided 𝑥𝑥4 = 0.9 as well, 

while only 0.63 if 𝑥𝑥4 = 0.8 and 0.50 if 𝑥𝑥4 = 0.6. This effect increases with 𝑝𝑝4. As 𝑝𝑝4 = 1, the 

effect of underestimation on the expected number of points is simply the amount of the 

underestimate itself.  

Figure 2 also reveals that given a certain amount of underestimation, the effect of 𝑝𝑝4 on the 

expected number of points is positive and increasing, where the degree of convexity is the 

largest for the benchmark case where 𝑥𝑥4 = 𝑝𝑝4. Although not shown, similar patterns hold for 

other values than 𝑘𝑘 = 4. For a certain value of 𝑝𝑝4 it makes it possible to find the higher value 

of 𝑝𝑝4 that would compensate for a certain underestimation of one’s ability. For example, 𝑥𝑥4 =

𝑝𝑝4 = 0.80 gives 𝐸𝐸(𝑌𝑌4| 𝑥𝑥4 = 𝑝𝑝4 = 0.80) = 0.47. To get the same number of expected points if 

the ability is underestimated by 0.3 units, it requires a value of 𝑝𝑝4 = 0.96, i.e., an increase of 

𝑝𝑝4 with 0.16 units. 
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Figure 3 shows the expected achieved points as a function of 𝑝𝑝4 for various degrees of 

overestimation of one’s ability to answer correctly. As in Figure 2 the dashed line corresponds 

to the case where 𝑥𝑥4 = 𝑝𝑝4, while the other four cases from the top down correspond to 

increasing overestimation, here 𝑥𝑥4 − 𝑝𝑝4 = 0.05, 0.1, 0.2, 0.3. 

As for the case of underestimation, for a given value of 𝑝𝑝4, the expected number of points 

decreases with degree of overestimation. For example, for 𝑝𝑝4 = 0.8 the expected number of 

points are 0.47 provided 𝑥𝑥4 = 0.8 as well, while only 0.43 if 𝑥𝑥4 = 0.9 and −0.20 if 𝑥𝑥4 = 1. 

Again, this negative effect increases with 𝑝𝑝4.  

 

Figure 3. 𝐸𝐸(𝑌𝑌4| 𝑥𝑥4) as a function of 𝑝𝑝4 for different positive deviations of 𝑥𝑥4 from 𝑝𝑝4. The 

dashed line corresponds to the case where 𝑥𝑥4 = 𝑝𝑝4, while the other four cases from the top 

down correspond to 𝑥𝑥4 − 𝑝𝑝4 = 0.05, 0.1, 0.2, 0.3. 

Contrary to the case of underestimation, the drop in expected number of points could be severe 

for large deviations. This is especially true for the case where 𝑥𝑥4 is close to or equal to 1. To 

illustrate, consider an examinee indicating a perceived probability of 100 %, i.e., 𝑥𝑥4 = 1, while 

the true probability of answering the question correctly is 𝑝𝑝4 = 0.7. The negative effect of this 

misjudgment of ability, in terms of loss in expected points, is 1.13. This follows from 

𝐸𝐸(𝑌𝑌4| 𝑥𝑥4 = 𝑝𝑝4 = 0.7) = 0.33 and 𝐸𝐸(𝑌𝑌4| 𝑥𝑥4 = 1, 𝑝𝑝4 = 0.7) = −0.8.  
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2.3 Comparison of properties: the CMB method vis-a-vis the standard negative marking 

method  

The design of the CBM scoring system was derived from two conditions being satisfied. Firstly, 

the points rewarded given a correct answer should be increasing in the level of confidence and 

secondly, the system must have a built-in mechanism guaranteeing the student reveals her true 

level of confidence. The first condition is met by definition. While the second condition might 

not exactly be fulfilled, in the sense that the reported confidence not always coincides with the 

true perceived probability, we believe the system guarantees that the former probability is at 

least a good estimate of the latter one. In designing a system fulfilling the above conditions, we 

end up with a system having properties different from standard negative marking setting. Three 

such properties will be discussed. 

First, unlike the negative marking method, the point deduction given an incorrect answer 

depends in our system on the examinee’s level of confidence. The more confident the larger 

point deduction. This property is certainly needed to discourage the examinee from reporting 

an overestimate of the perceived level. Whether the property per se is desirable or not is hard 

to tell. There are arguments for both sides. On the one hand, one could argue that the deduction 

should be constant, regardless of the level of confidence, by claiming lack of knowledge is not 

relative. An answer that is wrong remains a wrong answer, no matter if the test taker 

believes she is correct or not. On the other hand, if you find it reasonable that a student, call her 

A, being for example 90 % confident giving a correct answer, should get more points than a 

student B, being 60 % confident, you might accept a smaller point deduction for B than for A 

for the following reason. Suppose, initially, the question contains 𝑘𝑘 = 2 alternatives, only. 

Given an incorrect answer, A has indirectly assigned a low confidence on the correct alternative, 

only 10 %, while B has assigned a confidence at 40 %. This difference could motivate a smaller 

point deduction for B. The reasoning works for 𝑘𝑘 > 2 as well, although not with the same 

clarity. Here, you could argue that B should get a smaller point deduction than A, since B has 

indirectly assigned a level of confidence up to 40% for the correct alternative, while A only up 

to 10 %.  

Second, the dashed line in Figure 2 reveals for the case 𝑥𝑥4 = 𝑝𝑝4 that the effect on the expected 

number of points of an increase in the true probability of being correct is positive and increasing. 

Thus, given awareness of 𝑝𝑝4, the system rewards a certain increase in 𝑝𝑝4 from a high level more 
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than from a low level, in terms of increase in 𝐸𝐸(𝑌𝑌4). This result holds for other values than  𝑘𝑘 =

4 as well. For the negative marking method the corresponding effect is certainly positive. 

However, the effect is, unlike our method, constant. The expected number of points 

corresponding to the extreme values 1
𝑘𝑘
 and 1 of the true probability are the same for the negative 

marking method and our system, 0 and 1, respectively. Now, let 𝑉𝑉𝑘𝑘 be the expected number of 

points on the question of where negative marking is used. It is easily verified that3  

𝐸𝐸(𝑉𝑉𝑘𝑘) = − 1
𝑘𝑘−1

+ 𝑘𝑘
𝑘𝑘−1

𝑝𝑝𝑘𝑘, 

where the marginal effect is 𝑘𝑘
𝑘𝑘−1

, positive and constant.  For ease of comparison, Figure 4 shows 

both 𝐸𝐸(𝑉𝑉𝑘𝑘) and 𝐸𝐸(𝑌𝑌𝑘𝑘) as functions of 𝑝𝑝𝑘𝑘 for the case 𝑥𝑥4 = 𝑝𝑝4.  

 

 

Figure 4. 𝐸𝐸(𝑉𝑉4) and 𝐸𝐸(𝑌𝑌4) as functions of 𝑝𝑝4 for the case 𝑥𝑥4 = 𝑝𝑝4.  

 
3 By definition, 𝐸𝐸(𝑉𝑉𝑘𝑘) = − 1

𝑘𝑘−1
∙ (1 − 𝑝𝑝𝑘𝑘) + 1 ∙ 𝑝𝑝𝑘𝑘, provided the examinee always gives an answer if 

𝑝𝑝𝑘𝑘 > 1
𝑘𝑘
. 
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The difference in curvature has some interesting implications. Since the effect on 𝐸𝐸(𝑌𝑌4) of an 

increase in 𝑝𝑝4 from 0.25 to 0.26 is smaller than the corresponding effect of an increase in 𝑝𝑝4 

from 0.99 to 1.00, we value the latter increase in 𝑝𝑝4 higher. This is not the case with negative 

marking, where both increases in 𝑝𝑝4 are equally valued.  

Third, provided that the reported confidence reflects the perceived probability, in our model a 

student is rewarded if the perceived probability is close to the true probability. This is in contrast 

with the negative marking method, where the expected number of points on an exam is 

independent of the perceived probability, given the true probability. To illustrate the 

implications of our model in this regard, we consider two fictional students, C and D, writing 

an exam with 20 questions with four alternatives on each question. While the perceived 

probabilities of C are assumed to coincide with the true probabilities, here equal to 0.90 for all 

questions, we assume D to underestimate her knowledge. The perceived probabilities here are 

assumed to be 0.80, and the true ones, as for C, equal to 0.90. Thus, both students have the same 

knowledge, whereas C has a better perception. Assuming the reported confidence coincides 

with the true perception about her knowledge, this quality is rewarded. C is expecting 13.4 

points on the exam, while D is expecting only 12.7 points. Is it a reasonable difference? Most 

people would probably agree that it is a good quality to keep track of your own level of 

knowledge. A person who constantly overestimates her ability in various respects, risks making 

many mistakes. In the same way, a person who constantly underestimates her ability risks not 

getting much done, even though she has high capacity.  

 

3. An Implementation of a Continuous Scoring Function for CBM  

3.1 Design of an examination 

To launch a confidence-based marking examination with a continuous scoring function, 

students on a 10-week-long course in Basic Statistics were invited to participate in a lab session. 

The students took a test based on the CBM method consisting of 20 questions, where the number 

of alternatives was set to four for each question. To achieve a high attendance at the lab session, 

all students who participated could add points to the traditional written examination with open 

questions at the end of the course. The number of points added was determined by how well 

they performed on the test. The 20 % best performing students were rewarded five points, the 

second best 20% of students were given four points, and so on. That is, even the 20 % worst 

performing students got one extra point. The differentiation of points was justified by 
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motivating the students to do their best on the test. While the questions on the traditional written 

exam aim to test the student’s ability to choose a suitable statistical method to a given situation 

and to perform that method in a proper way, the questions on this quiz were, to a larger extent, 

designed to test the student’s understanding of statistical concepts and interpretation of results. 

Before the two-hour test was taken by the students, the teacher introduced the new scoring 

system for a period of 15 minutes to make sure the students knew what was expected from 

them. A table showing  𝑓𝑓4(𝑥𝑥4) for 𝑥𝑥4 = 0.25, 0.26, … , 1.00 was handed out to the students. 

They also got the information that those figures are calculated in such a way that the expected 

score on a certain question is maximized if the reported confidence coincides with the true 

probability of giving the correct answer. The students were also informed about the 

reasonableness of 0.25 being a lower limit for the perceived probability. 

 

3.2 Data 

In total, 126 students participated in the session. It makes up 90 % of all registered students on 

the course. The students wrote the test by hand. Consider Table 3. It shows the descriptive 

statistics for five variables based on the 126 students taking the test. Among these questions 

there is certainly a variation in these variables.  

Table 3. Descriptive statistics for some variables based on the 126 students taking the test 

Variable 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞1 𝑚𝑚𝑚𝑚 𝑞𝑞3 𝑚𝑚𝑚𝑚𝑚𝑚 

Proportion of responded answers 0.55 0.80 0.90 1.00 1.00 

Proportion of correct answers 0.1667 0.5500 0.6583 0.7500 0.9500 

Average reported level of confidence 0.3727 0.5877 0.6722 0.7339 0.9185 

Confidence deviation -0.280000 -0.076414 0.009412 0.119474 0.487500 

Average score -2.06 0.06895 0.2254 0.345 0.86375 

 

Row one shows that half of the students respond to 90 % or more of the questions. From the 

second row the variation in Proportion of correct answers is quite large, where this proportion 

stretches from 16.7 % to 95.0 %, with a median value of 65.8 %. For the variable Average 

reported level of confidence the location is about the same, yet a smaller variation. 

The variable Confidence deviation on row four is defined as the difference between Average 

reported level of confidence and Proportion of correct answers. With a median value close to 
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zero, on average half of the students overestimate their capacity and the rest underestimate their 

capacity. The maximum value of 0.49 for the variable Confidence deviation is especially high, 

meaning that one student systematically overrates her level of confidence by 49 percentage 

units. In the lefthand tail of the distribution another student instead underrates her capacity by 

28 percentage units on average. 

Finally, for the variable Average score the median value is 0.225. At first glance, this score may 

seem low. But on reflection, it is not, but a consequence of the design of our scoring system. 

To put the score 0.225 into context, consider a student who is perfectly correct about her level 

of confidence being 61 % on each question. Her expected score is 0.225 on each question. The 

same holds for a student having a probability of 0.63 of being correct on each question, while 

overestimating her capacity by 11 percentage units on each question. The extreme minimum 

value of -2.06 is a result of a student having a low proportion of correct answers in combination 

with heavy overestimation of capacity. 

 

3.3 Assessing confidence levels with individual ability curves   

In this section it is described how we estimate the relation between the true probability of giving 

the correct answer to a question and the reported confidence level at the individual level. We 

call this relation the individual’s ability curve for assessing confidence levels. The estimated 

ability curves serve two purposes. First, they help us to estimate the distribution among students 

of the true probability of giving the correct answer given a reported confidence level. Second, 

they can be used to estimate a particular student’s potentially best score achievable if she would 

have had perfect self-awareness, that is, if her reported confidence level would have coincided 

with the true probability. This makes it possible to separate the two components making up the 

total score: knowledge about the course and self-awareness. 

Our method is similar to that used in Wu et al. (2021), but instead of using a Rasch model to 

estimate the individual's ability as they do, we let the explanatory variable in the logistic 

regression be the log odds of the individual’s reported confidence level. For a responded 

question, let 𝑌𝑌 be a random variable taking the value 1 if the answer is correct, 0 otherwise. In 

addition, let 𝑋𝑋 be the reported confidence level. We think of the 20 questions comprising the 

exam as a random sample from a large bank of questions. For a given individual, 

(𝑋𝑋1,𝑌𝑌1), … , (𝑋𝑋𝑛𝑛 𝑌𝑌𝑛𝑛), where 11 ≤ 𝑛𝑛 ≤ 20, constitute a random sample where the dependent 

variable 𝑌𝑌𝑖𝑖~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑝𝑝𝑖𝑖), 𝑖𝑖 = 1, … ,𝑛𝑛, 𝑃𝑃(𝑌𝑌𝑖𝑖 = 1) = 𝑝𝑝𝑖𝑖 being modelled as a function of 𝑋𝑋𝑖𝑖 as 
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𝑝𝑝𝑖𝑖 =
exp (𝛽𝛽0 + 𝛽𝛽1 ln � 𝑋𝑋𝑖𝑖

1 − 𝑋𝑋𝑖𝑖
�)

1 + exp (𝛽𝛽0 + 𝛽𝛽1 ln � 𝑋𝑋𝑖𝑖
1 − 𝑋𝑋𝑖𝑖

�)
. 

The log odds of the reported confidence level are used to allow for perfect self-awareness, i.e., 

𝑝𝑝𝑖𝑖 = 𝑋𝑋𝑖𝑖, being a special case in the model, corresponding to the parameter restrictions 𝛽𝛽0 = 0 

and 𝛽𝛽1 = 1.  

We note that the log odds are not defined when 𝑋𝑋𝑖𝑖 = 1, i.e., when the student claims to be 100 

% percent sure of the answer. This is solved by assigning 𝑋𝑋𝑖𝑖 the value 0.9963 instead of 1 in 

those cases. The reasoning behind this number goes as follows. Theoretically, from section 2.1 

an infinite point deduction should be the result of giving the wrong answer being 100 % 

confident. As this is not practically feasible, we choose, somewhat arbitrary, the punishment to 

be the largest negative integer such that an examinee being 99 percent confident, still would 

indicate a confidence of 0.99 rather than 1.00 to maximize her perceived expected number of 

points on the question. Upon examination it was found that it is beneficial in terms of expected 

points to indicate 100 % confidence provided the examinee is at least 99.26 % confident. The 

assigned value 0.9963 is the midpoint in the interval [0.9926, 1].  

We tried to estimate ability curves for all students in the sample by the maximum likelihood 

method. Estimates were successfully obtained for 124 students.4  

 

3.4 Distribution of ability curves  

Based on the estimated ability curves it is possible to estimate the distribution of the probability 

of giving a correct answer among the students conditioning on various confidence levels 

between 0.25 - 1.  

Consider Figure 5. It shows the distribution of the probability of giving a correct answer among 

the students for various confidence levels. The five curves show the 5:th, 25:th, 50:th, 75:th and 

95:th percentile, while the straight line represents perfect self-awareness, 𝑃𝑃(𝑌𝑌 = 1) = 𝑥𝑥. The 

curve representing the median is below the straight line for high levels of confidence and above 

 
4 For the remaining two students, we failed due to convergence problems, most likely caused by too small a spread 
in the dependent variable. Instead, for these two students, simple linear probability models were estimated by 
ordinary least squares.  
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for low values, meaning that a typical student stating a high level of confidence overestimates 

her knowledge, while underestimating her knowledge for low levels. The gap between the 95:th 

percentile and the 5:th percentile is quite high for all confidence levels. This means that there 

are students who systematically overestimate as well as underestimate their knowledge largely 

for all levels of confidence.  

 

Figure 5.  Distribution of the probability of giving a correct answer among the students shown 
by the 5:th, 25:th, 50:th, 75:th and 95:th percentile for various confidence levels. The straight 
line represents perfect self-awareness, 𝑃𝑃(𝑌𝑌 = 1) = 𝑥𝑥. 

 

In Figure 6 the median of the probability of giving a correct answer among the students, divided 

by sex is shown. Men are represented by the blue curve and women by the red curve. The figure 

indicates that men are better to assess their confidence level on average. The difference is 

especially notable for high values of 𝑥𝑥, where women overestimate their knowledge to a larger 

extent than men do.  
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Figure 6. The median of the probability of giving a correct answer among the students, divided 
by men (blue curve) and women (red curve). The black line represents perfect self-awareness, 
𝑃𝑃(𝑌𝑌 = 1) = 𝑥𝑥. 

 

3.5 Decomposition of total score  

We decompose the total score into two components, reachable total score and self-awareness score. We 

define reachable total score as the total score that the student would have reached if she could have 

perfectly assessed her confidence level, i.e., if 𝑃𝑃(𝑌𝑌𝑖𝑖 = 1) = 𝑥𝑥𝑖𝑖 for all 𝑖𝑖 = 1, … ,𝑛𝑛. A student’s value of 

the reachable total score is calculated through use of the student’s estimated ability curve described in 

Section 3.4. To illustrate, suppose that according to the estimated ability curve, 𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋 = 0.85) =

0.70, i.e., the student overestimates her confidence level by 15 percentage units when stating a level of 

confidence equal to 85 %. If this student on a particular question states 85 % level of confidence, the 

contribution to the total score is 0.85 if the student is correct and -1.09 if not, according to Table 2. If 

the student had had perfect assessment, i.e., stating a confidence level of 0.70 instead of 0.85, the 

possible contributions are 0.70 and -0.55, considered to be possible contributions to the so-called 

reachable score. So, given the student’s estimated ability curve, her 𝑛𝑛 indicated confidence levels and 

answers, correct or not correct, we get 𝑛𝑛 contributions, whose sum makes up the total reachable score.5 

The self-awareness score is simply defined as the difference between the reachable total score 

and the total score. For example, a student having a total score of 6.2 and a reachable total score 

 
5 For some students and questions, we get 𝑃𝑃(𝑌𝑌 = 1|𝑋𝑋 = 𝑥𝑥) < 0.25. In these cases, the contribution is set to 0, 
because with this information it is assumed that the student would not have answered to the question. 
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of 8.5 has a self-awareness score equal to -2.3, meaning that the student loses in total 2.3 points 

because of imperfect assessment skills.  

Table 4 shows descriptive statistics for the variables total score, reachable total score and self-

awareness score among all students.6 The first line is simply the last line in Table 2 multiplied 

by 20, the number of questions. The median self-awareness score is moderately -1.08, while 

both the minimum value and the maximum value are salient. One of the students loses 41.67 

points by bad assessments, while another student has perfect assessment skills with a self-awareness 

score equal to 0.00.  

Table 4. Descriptive statistics for the variables total score, reachable total score and self-
awareness score among all students. 

Variable 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞1 𝑚𝑚𝑚𝑚 𝑞𝑞3 𝑚𝑚𝑚𝑚𝑚𝑚 

Total score -41.248    1.379    4.508    6.907   17.275 

Reachable total score  0.378    3.829    5.771    8.040   17.275 

Self-awareness score  -41.67   -2.70  -1.08   -0.32    0.00 

 

In Figure 7 the variable reachable total score is plotted against the variable total score, where 

blue circles represent men, and red circles refer to women. Not surprisingly, we see a positive 

relationship between these variables with a Spearman’s rank correlation equal to 0.90 (0.91 for 

men and 0.86 for women). The black line in the figure represents perfect assessment, where the 

total score coincides with the reachable total score. The figure reveals that a not negligible 

number of students has severe misperception about their confidence levels. At the same time, 

quite a large proportion of the students are close to this border. This observation is also mirrored 

in Table 4; 25 % of the students has a loss from imperfect assessment less than or equal to only 0.32 

points.  

 
6 Note that it is not possible to get the figures on line 1 by summing the figures in line 2 and 3 column wise, 
because the figures in a particular column might refer to different students. 
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Figure 7. Plot of reachable total score on total score. blue circles represent men, and red circles 
refer to women. The black line in the figure represents perfect assessment.  

 

Figure 8 shows a scatterplot of rank values of reachable total score against rank values of self-

awareness score, where both ranking values are in ascending order. The linear relationship is 

not strong, yet we have a significantly positive correlation with the Pearson correlation 

coefficient being 0.327 (p-value equal to 0.00018, while no difference between the sexes was 

supported). Thus, on average, the higher self-awareness of your knowledge, the more 

knowledge.  
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Figure 8. Plot of ranking values of reachable total score on ranking values on self-awareness 
score. Blue circles represent men, and red circles refer to women.  

 

To further facilitate the comparison between men and women, in Table 5 we provide descriptive 

statistics for the variables total score, reachable total score and self-awareness score divided by 

men and women. From the table it is evident that men, on average, have performed better than 

women on the test in all respects, having distributions located more to the right for all three 

variables. 

Table 5. Descriptive statistics for the variables total score, reachable total score and self-
awareness score divided by men and women. 

Variable 𝑚𝑚𝑚𝑚𝑚𝑚 𝑞𝑞1 𝑚𝑚𝑚𝑚 𝑞𝑞3 𝑚𝑚𝑚𝑚𝑚𝑚 

Total score (men) -14.043    2.370    5.783    8.421   17.275 

Total score (women) -41.248 -0.249    3.409    5.353   10.485 

Reachable total score (men) 0.500    4.846    6.973    8.948   17.275 

Reachable total score (women) 0.378    2.732    4.568    6.556   13.697 

Self-awareness score (men) -16.10  -2.33   -0.95   -0.28    0.00 

Self-awareness score (women) -41.67   -3.40   -1.24   -0.40 0.00 
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Finally, a comparison with the classical scoring system using negative marking is made. For 

each student, the total score that the student would have had if the test had used the negative 

marking system instead is calculated. For those questions that the student has given an answer, 

the student is rewarded by 1 point if the answer is correct and punished by 1/3 points if the 

answer is incorrect. Also, just like in our system, the student gets 0 points if the question is 

unanswered. In this way we get 126 observations on the variable total score with negative 

marking. The Spearman’s correlations between this variable and the variables total score and 

reachable total score are 0.83 and 0.93, respectively. The reason why the latter correlation is 

higher is explained by the downsized importance of self-awareness about confidence levels 

using the negative marking system. Moreover, the explanation for the latter correlation not 

being even closer to 1 is found in Figure 4, showing that knowledge, defined as expected 

number of points, is defined in two different ways for the systems.  

 

4. Conclusions and Discussion 

The CBM scoring scheme derived in this paper and implemented in an examination has the 

property of being strict monotonically increasing in the examinee’s reported confidence. In 

contrast to various discrete certainty scales applied in previous empirical CBM studies, where 

the starting values for rewards and penalties are determined arbitrarily, albeit surely 

educationally meaningful, our scoring scheme rewards the examinee with the same score as her 

reported level of confidence, given a correct answer. The penalty, in case of an incorrect answer, 

is based on the reported confidence level such that the expected score on the question is 

maximized when the reported level coincides with the true probability of a correct answer.  

The theoretical properties of our continuous scoring model are in line with many of those using 

a discrete confidence scale. The effect of the true probability of correctly answering the question 

on the expected score is positive and deviations of reported confidence from true probability 

have a negative impact on the expected score, especially for high positive deviations with a 

reported confidence close to or equal to 100 %.   

Part of the analysis of the data obtained from the implementation rests on a method we develop 

to split the total score into two components, reachable total score and self-awareness score, 

where reachable total score is defined as the total score the student would have reached if she 

could have perfectly assessed her confidence level.  
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We observe that most students are quite good at assessing their confidence levels, a result found 

in previous studies (e.g., Barr & Burke, 2013; Foster, 2016; Wu et al., 2021). Also, a small 

significantly positive rank correlation is observed between reachable total score and self-

awareness score, suggesting that those who know more also know more about what they know, 

although the relationship is not very strong. These results align with the work of Lichtenstein 

and Fischhoff (1977). 

Our findings, that students on average tend to overrate their confidence for high levels of stated 

confidence and underrate their confidence for low levels of confidence is not consistent with 

the cumulative prospect theory and deviates from what is observed in Wu et al. (2021). It should 

though be pointed out that, in contrast to the response data analyzed in their study, there was 

no cutoff point set in our exam. Instead, the students were awarded points depending on their 

performance relatively others. Hence, the higher score obtained in the test, the higher the 

probability of ending up in the right tail of the distribution. The presence of a cutoff point in a 

CBM test, might very well change the objective of the examinee. The goal is now not to 

maximize expected score, but instead to try to obtain enough score to pass the test, given the 

attitudes towards risk. An examinee with little knowledge might overrate her confidence levels 

to maximize the probability of passing. To what extent a cutoff affects examinees’ risk behavior 

in CBM tests is a question for further research. 

Moreover, the result that men were better calibrated than women while women were more over-

confident than men, contrast findings in the literature (e.g., McMurran et al., 2023). The 

deviating result might be due to the women in our study typically scoring lower than the men, 

which means the findings could have been different had we taken this into account.  

There might be different motives for an examiner to use the proposed scoring system. One 

motive is that the examiner finds the way the scoring system measures the examinee’s 

knowledge attractive. If this is the case, it has two main implications. First, the examiner prefers 

the effect of the true probability to correctly answer the question on the expected score being 

not only positive but also increasing. This contrasts with the negative marking model having a 

positive constant effect. Second, the examiner also finds the scoring system’s property of 

rewarding self-assessment a plausible one.  

Another motive for the examiner is to obtain valuable information about the distribution of 

confidence among the examinees on various questions in the exam, information that can be 
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useful in future teaching. However, if this is the main motive, the examiner should also be aware 

of the properties the system has on scoring at the individual level. 

In addition, by using the proposed scoring system, it is possible at an individual level to estimate 

how well the students can assess their level of knowledge. Here is especially the method used 

to estimate ability curves useful. While the estimated ability curves are based on a maximum 

of 20 observations only, and it might be risky to generalize to other topics, we still believe that 

presenting these curves to students can provide some valuable insights to take with them. 

In the course evaluation many students were positive about having had the possibility of trying 

the proposed system and that the design of the system was an instructive application of theories 

and concepts that they learned during the basic statistics course. While the experiment turned 

out well and the reactions from the students were positive, it is not obvious that this system 

would work for other student groups. We must keep in mind that the student group on which 

the experiment was conducted was unusually favorable in this context, since they were well 

familiar with statistical concepts such as probability and expected value, which the scoring 

system is based on.  

 

  



25 
 

References  

Barr, D. A., & Burke, J. R. (2013). Using confidence-based marking in a laboratory setting: A 
tool for student self-assessment and learning. Journal of Chiropractic Education, 27(1), 21-
26. 

Ben-Simon, A., Budescu, D. V., & Nevo, B. (1997). A comparative study of measures of 
partial knowledge in multiple-choice tests. Applied Psychological Measurement, 21(1), 65-88. 

Boldt, R. F. (1971). A SIMPLE CONFIDENCE TESTING FORMAT 1. ETS Research 
Bulletin Series, 1971(2), i-18. 

Echternacht, G. J. (1972). The use of confidence testing in objective tests. Review of 
Educational Research, 42(2), 217-236. 

Foster, C. (2016). Confidence and competence with mathematical procedures. Educational 
Studies in Mathematics, 91(2), 271-288. 

Gardner-Medwin, T. (2019). 12 Certainty-based marking. Innovative Assessment in Higher 
Education: A Handbook for Academic Practitioners, 141. 

Gardner-Medwin, T., & Curtin, N. (2007, May). Certainty-based marking (CBM) for 
reflective learning and proper knowledge assessment. In REAP International Online 
Conference on Assessment Design for Learner Responsibility, 29-31. 

Kanzow, A. F., Schmidt, D., & Kanzow, P. (2023). Scoring single-response multiple-choice 
items: scoping review and comparison of different scoring methods. JMIR Medical 
Education, 9, e44084. 

Lichtenstein, S., & Fischhoff, B. (1977). Do those who know more also know more about 
how much they know? Organizational Behavior and Human Performance. 20(2), 159-183. 

Mcmurran, M., Weisbart, D., & Atit, K. (2023). The relationship between students' gender 
and their confidence in the correctness of their solutions to complex and difficult mathematics 
problems. Learning and Individual Differences, 107 

Remesal, A., García-Mínguez, P., Domínguez, J., & José Corral, M. (2024). Certainty-Based 
Self-Assessment in Higher Education: A Strategy for All?  International Journal of Advanced 
Corporate Learning, 17(3). 

Smrkolj, Š., Bančov, E., & Smrkolj, V. (2022). The reliability and medical students’ 
appreciation of certainty-based marking. International journal of environmental research and 
public health, 19(3), 1706. 

Wu, Q., Vanerum, M., Agten, A., Christiansen, A., Vandenabeele, F., Rigo, J. M., & Janssen, 
R. (2021). Certainty-based marking on multiple-choice items: Psychometrics meets decision 
theory. Psychometrika, 86(2), 518-543. 


	WP 10 frontpage
	WORKING PAPER 11/2025 (ECONOMICS)
	A Continuous Scoring Function for Confidence-Based Marking using Multiple Choice Questions

	Uppsats 2 30 september

