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is partially supported by the grant PID2022-138289NB-I00 from the Spanish State Research Agency (Agencia Es-
tatal de Investigación - Ministerio de Ciencia e Innovación). Hoang Nguyen acknowledges financial support from
the project “Improved Economic Policy and Forecasting with High-Frequency Data” (Dnr: E47/22) funded by the
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Abstract

We propose a high-frequency stochastic volatility model that integrates persistent compo-

nent, intraday periodicity, and volume-driven time-of-day effects. By allowing intraday volatility

patterns to respond to lagged trading activity, the model captures economically and statisti-

cally relevant departures from traditional intraday seasonality effects. We find that the volume-

driven component accounts for a substantial share of intraday volatility for futures data across

equity indexes, currencies, and commodities. Out-of-sample, our forecasts achieve near-zero

intercepts, unit slopes, and the highest R2 values in Mincer-Zarnowitz regressions, while horse-

race regressions indicate that competing forecasts add little information once our predictions

are included. These statistical improvements translate into economically meaningful gains, as

volatility-managed portfolio strategies based on our model consistently improve Sharpe ratios.

Our results highlight the value of incorporating lagged trading activity into high-frequency

volatility models.

Keywords: Intraday volatility, high-frequency, volume, periodicity.

JEL Classification: C11, C22, C53, C58
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1 Introduction

Successful modeling and forecasting of financial volatility plays a critical role in risk manage-

ment, portfolio allocation, derivative pricing, and market microstructure analysis. While daily

and lower frequency volatility are largely driven by their own persistence, intraday volatility ex-

hibits richer and more complex dynamics. In addition to the persistent component, high-frequency

volatility follows a strong time-of-day pattern which is typically captured by a static dummy-

based component forming a periodic effect, sometimes referred to as seasonal or diurnal (Engle and

Sokalska, 2012; Stroud and Johannes, 2014; Rossi and Fantazzini, 2015; Bekierman and Gribisch,

2021; Martins and Lopes, 2025; Martins et al., 2025). However, such static structures cannot adapt

to short-term deviations caused by market trading activity, and therefore miss an important source

of intraday heterogeneity.

In order to address the limitations of previous approaches, we make the following methodolog-

ical and empirical contributions. Methodologically, we propose a new high-frequency stochastic

volatility model that embeds time-of-day effects within a volume-driven dynamic framework. The

model decomposes time-of-day effects into two components: a static baseline that captures the

recurring intraday pattern and a dynamic component that allows these periodic effects to adjust

flexibly in response to deviations of lagged trading volume from its typical level. This volume-driven

adaptation provides a parsimonious yet interpretable way to model economically meaningful depar-

tures from the periodic specification. As a result, volatility can respond dynamically to short-term

market activities. We develop a Markov Chain Monte Carlo (MCMC) algorithm to estimate the

proposed model and a particle filter to produce intraday volatility forecasts.

Empirically, we show the relevance and usefulness of this approach across multiple assets. First,

our volume-driven component explains between 33% to 45% of intraday log-variance variation.

Second, the dynamic time-of-day component significantly improves out-of-sample forecasting ac-

curacy measured by squared and absolute losses. These improvements are statistically validated

by Diebold-Mariano tests for predictive superiority. Third, beyond the statistical performance, the

proposed model yields economically meaningful gains in volatility-managed portfolios highlighting

the practical importance of volume-driven intraday heterogeneity in modern financial markets.

This paper relates to the literature highlighting the role of trading activity in volatility dynam-
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ics, motivated by the well-established theoretical and empirical evidence linking trading volume

and volatility. Classic frameworks such as the Mixture of Distributions Hypothesis (MDH) (Clark,

1973; Tauchen and Pitts, 1983; Andersen, 1996) and the Sequential Information Arrival Hypothesis

(SIAH) (Copeland, 1976; Jones et al., 1994) indicate that trading volume reflects the rate of infor-

mation flow into prices, which naturally generates a positive relation between volume and volatility.

A detailed review of early literature on the return-volume relationship across financial markets is

presented by Karpoff (1987).

MDH posits that volatility and trading volume are contemporaneously related, both driven by

the rate of information flow arriving in the market. In this framework, contemporaneous trading

volume serves as a proxy for the intensity of information arrivals, which in turn shapes volatility.

Early evidence by Lamoureux and Lastrapes (1990) shows that when trading volume is included

in volatility models, persistence parameters become small and statistically insignificant, suggesting

that volume captures much of the serial correlation in volatility. In a stochastic volatility setting,

Abanto-Valle et al. (2010) demonstrate that information about volatility can be inferred not only

from returns but also from trading volume. Louhichi (2011) further decompose trading volume

into the number and size of trades, showing that the well-documented positive relationship between

volatility and volume is primarily driven by the number of trades. More recently, Slim and Dahmene

(2016) confirm a strong positive contemporaneous relationship between total trading volume and

realized volatility, particularly its continuous component. In line with the MDH, Ramos et al.

(2020) show that salient information increases both trading volume and volatility, suggesting that

the two are driven by a common information-based channel.

However, the contemporaneous focus of MDH overlooks potential lagged interactions between

volume and volatility, which are central to the SIAH. According to SIAH, new information reaches

investors sequentially, leading to a lead-lag relationship between trading volume and volatility.

Trading volume tends to react first to new information, while volatility adjusts later as more market

participants process the new information and respond to it. Multiple empirical findings support this

view. Chiang et al. (2010) report that trading volume possesses strong predictive power for future

volatility and that the relationship is nonlinear. Using HAR framework, Wang et al. (2015) show

that lagged trading volume significantly improves forecasts of daily realized volatility. Similarly,

Zheng et al. (2019) find that trading volume predicts both same-day and near-future peaks in
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volatility. Yet, as Liu et al. (2023) point out, there remains no dominant conclusion regarding the

forecasting role of volume, with roughly half of existing studies supporting SIAH and the other

half consistent with MDH. More recent works show that volume remains a critical determinant

of modern market dynamics, liquidity provision, price discovery, and volatility clustering even in

today’s high-frequency, electronic trading environment (Rubia and Sanchis-Marco, 2013; Easley

et al., 2016; Naimoli and Storti, 2019; Easley et al., 2021).

Our study contributes to the SIAH literature by providing novel high-frequency evidence on

the predictive power of lagged trading volume for volatility. We show that lagged deviations of

trading volume from its typical intraday pattern offer timely signals of changing market conditions.

Importantly, the strength of this predictive relationship is heterogeneous: the estimated coefficients

vary substantially across different trading hours, reflecting how the influence of information flow

depends on which global markets are active. These findings extend the SIAH framework to the

high-frequency domain and highlight the nonlinear nature of the volume-volatility relationship.

Closest to our setting is Bollerslev et al. (2018), who study the intraday interaction between

volume and volatility around macroeconomic announcements. While their analysis highlights event-

driven shifts, our focus is complementary. We concentrate on systematic time-of-day variation.

Since each intraday observation is inherently tied to a trading interval, a volume-driven adjustment

to these patterns provides a natural and broadly applicable channel through which trading activity

shapes volatility throughout the trading day. Importantly, our framework is flexible enough to

incorporate event-related effects in the spirit of Bollerslev et al. (2018), even though our emphasis

here is on the time-of-day component.

More broadly, our work relates to a large literature on modeling intraday volatility. While it is

possible to model the persistent component of intraday volatility using Generalized Autoregressive

Conditional Heteroskedasticity (GARCH) as in Andersen and Bollerslev (1997, 1998); Andersen

et al. (2007); Engle and Sokalska (2012), or realized volatility (RV) as in Dumitru et al. (2025), we

opt to use a stochastic volatility (SV) approach as in Taylor (1986); Broto and Ruiz (2004). SV

models treat volatility as an unobserved latent process, is consistent with continuous-time asset

pricing, and generally yields smoother paths for volatility dynamics. Empirically, SV approaches

have been shown to deliver superior out-of-sample performance relative to GARCH and RV, as

documented in Stroud and Johannes (2014); Bekierman and Gribisch (2021); Martins and Lopes
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(2025); Martins et al. (2025), among others.

The remainder of the paper is organized as follows. Section 2 introduces the data, the econo-

metric model, and the Bayesian approach. Section 3 reports the in-sample evidence on the role of

volume-driven time-of-day effects. Section 4 evaluates out-of-sample forecasting performance and

presents the portfolio application. Section 5 concludes.

2 Data, econometric model and estimation approach

This section describes the data, econometric framework, and estimation strategy. We begin

by introducing the futures contracts and intraday dataset used in this article. We then present

our proposed stochastic volatility model that decomposes intraday return volatility into persistent,

time-of-day, and Sunday opening components, with particular emphasis on a novel volume-driven

time-of-day effect. Finally, we describe a Bayesian estimation approach that performs joint inference

on model parameters and latent volatility states, relying on modern Bayesian forecasting techniques

that have proven effective for nonlinear models (Martin et al., 2024).

2.1 Data

Our empirical analysis focuses on four highly liquid futures contracts: the E-mini S&P 500, the

E-mini Nasdaq 100, the Euro FX futures, and West Texas Intermediate crude oil futures, or in

short, S&P 500, Nasdaq, Euro and WTI. The E-mini equity index futures, traded electronically on

CME Globex, are scaled-down versions of their full-sized counterparts, with notional values of 50

times and 20 times the underlying index for the S&P 500 and Nasdaq 100, respectively. The smaller

size contracts lower margin requirements and trading costs, making E-minis the dominant vehicle

for intraday trading and price discovery in U.S. equity index futures markets. The Euro FX futures

contract, also traded on CME Globex, tracks the value of the Euro against the U.S. dollar. WTI

crude oil futures, traded on NYMEX, are the most liquid energy futures contract worldwide and

serve as the global benchmark for crude oil pricing. Together, these assets span equity, currency,

and commodity markets, offering a rich variety of trading environments. All four contracts trade

nearly around the clock, with sessions beginning on Sunday at 18:00 Eastern Time (ET) and ending

on Friday at 17:00 ET, with one-hour break every day between 17:00-18:00. Historically, the E-mini
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S&P 500 and Nasdaq 100 had an additional 15-minute daily maintenance break from 16:15 to 16:30

ET, but this restriction was lifted in June of 2021.

Our sample spans from January 3, 2016, to August 30, 2024. The data are split into an

estimation sample ending on December 31, 2021, and an out-of-sample evaluation period covering

the remaining observations. Our model uses 5-minute (log-)returns and trading volume in number

of contracts. A 24-hour day consists of 288 five-minute intervals, although daylight saving time

adjustments occasionally produce 23-hour or 25-hour days. Non-trading intervals are filled using

the last available transaction price and assuming zero volume. One exception is when a trading

break occurs. In such cases, all timestamps within the break are removed from our sample. Thus,

most days consists of 276 observations. The data is constructed from continuous futures by linking

successive most-liquid contracts from the CME group to form uninterrupted time series. Appendix

A at the end of the manuscript contains the main descriptive statistics and plots related to our

data.

2.2 Econometric model

We model univariate de-meaned 5-minute log-returns, yt, as

yt = exp(ht/2)εt, εt ∼ N(0, 1), for t = 1, . . . , T, (1)

where ht represents the conditional log-variance process of returns. We decompose the log-variance

into five additive components,

ht = m0 + todpt + todvt + xt + sot, (2)

where m0 denotes the unconditional level of log-volatility, tod
p
t captures periodic time-of-day effects,

todvt captures volume-driven deviations in time-of-day effects, xt is the persistent latent component,

and sot accounts for the effect of volatility shifts around the Sunday market opening 1.

Let’s denote k as the specific 5-minute intraday window corresponding to the timestamp t via

the window indicator function w(t) = k ∈ {1, . . . ,K} and, since our assets are traded 23 hours a

1The pronounced spike in volatility observed when markets reopen on Sundays reflects the accumulation of un-
certainty and order imbalances over the weekend, see Martins et al. (2025) for empirical evidence regarding WTI.
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day, K = 276. Let It be a K-dimensional vector that is 1 in the position w(t) and zero otherwise.

The periodic time-of-day component, todpt , is represented as

todpt = I′tβ
p with

K∑
k=1

βp
k = 0, (3)

where the K-dimensional vector βp = {βp
1 , . . . , β

p
K}′

captures the fixed periodicity in intraday

volatility. Since It includes all 5-minute windows of the 23 traded hours and our ht specification in

Equation (2) already includes the intercept m0, we impose the zero-sum restriction
K∑
k=1

βp
k = 0 to

ensure identification. This parameterization anchors the set of fixed intraday effects around zero,

allowing m0 to represent the average log-variance level.

Our main modeling novelty comes when modeling the volume-driven time-of-day effects todvt .

This component allows intraday effects to evolve over time by incorporating lagged trading activity.

Consider the lagged trading window k∗ = w(t − 1), let us denote the average log-volume for

time-of-day k∗ as V k∗ and, analogously, denote the time-of-day standard deviation as σV ∗
k
. The

volume-driven time-of-day component todvt is represented as

todvt = vt−1 I
′
tβ

v with vt−1 =
Vt−1 − V k∗

σV ∗
k

, (4)

where vt−1 is the scaled deviation of lagged log-volume from its time-of-the day average Vk∗ and

the K-dimensional vector βv captures how this deviation interacts with the intraday structure.

The volume-driven component allows for the inclusion of new information to intraday volatility

via lagged trading activity. When trading activity is unusually high or low, the volume-driven

component allows the log-variance process to shift accordingly. Unlike βp, there is no need to

impose a zero-sum restriction on βv, since vt−1 has mean-zero by construction. One could also

consider vt−1 as a weighted sum of multiple lagged volume deviations. However, for simplicity, we

consider deviations only from one lagged observation.

The fixed and dynamic time-of-day components can be viewed jointly as

todt = todpt + todvt = I′t(β
p + vt−1β

v). (5)
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When volume is at its time-of-day average, todvt = 0 and the specification collapses to the standard

static form. However, when trading activity is unusually high or low, the volume-driven component

allows more flexibility in the log-variance process to depart from the static baseline.

The persistent component follows a stochastic volatility process,

xt = ϕxt−1 + σxηt, ηt ∼ N(0, 1), (6)

with persistence parameter ϕ and innovation scale σx. This component captures the rate at which

shocks to volatility decay.

Finally, we include adjustments for the Sunday market opening following Martins et al. (2025).

This is modeled as

sot = H′
tβ

so, (7)

where Ht is a m-dimensional indicator vector for the Sunday opening session and its lagged 5-

minute trading windows, and the m-dimensional vector βso captures the associated log-variance

shift. Therefore, our model allows for shifts in volatility up to m lags after the Sunday opening

event.

Equations (1) - (7) specify our model for intraday returns with volatility that combines a persis-

tent latent factor, periodic and volume-driven time-of-day effects, and Sunday opening adjustments.

The key innovation lies in the specification of the volume-driven time-of-day component, todvt , which

allows the strength of intraday periodic patterns to flexibly adjust to lagged market activity. This

feature extends the traditional periodicity-based approach by linking intraday volatility directly to

trading intensity, thereby capturing short-term deviations from static patterns.

Table 1 summarizes how our proposed specification nests several stochastic volatility models as

special cases. These include (i) a vanilla SV model (SV), (ii) an SV with detrministic time-of-day

effects (PSV), and (iii) an SV with deterministic time-of-day and Sunday-opening effects (PSVO).

These benchmarks serve as natural points of comparison in our empirical analysis.
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Table 1: Nested models

Persistence Deterministic ToD Sunday Open Volume ToD
(xt) (todpt ) (sot) (todvt )

Proposal ✓ ✓ ✓ ✓
PSVO ✓ ✓ ✓
PSV ✓ ✓
SV ✓

The first column lists the model mnemonics, and the remaining columns indicate which

components are included: a persistent stochastic volatility factor (xt), deterministic time-

of-day effects (todpt ), volume-driven time-of-day effects (todvt ) and Sunday-opening effects

(sot). Our proposed model includes all components, while the other specifications represent

restricted variants.

2.3 Estimation approach

We adopt a Bayesian framework to estimate the model described in Section 2.2 by Equations (1)

- (7). Our Bayesian approach simultaneously estimates all parameters and latent states, avoiding

the need for potentially inefficient two-stage estimators and allowing for direct probabilistic state-

ments on both parameters and latent volatility dynamics. Since the conditional likelihood involves

high-dimensional latent states and cannot be integrated out in closed form, posterior inference re-

lies on MCMC methods to generate draws from the joint posterior distribution of parameters and

latent processes.

We follow the log-linearization strategy of Kim et al. (1998) to facilitate efficient sampling.

Specifically, we rewrite (1) as

log(y2t ) = ht + log(ε2t ), (8)

and approximate log(ε2t ) with a finite mixture of seven Gaussian components. The model can be

expressed in a conditionally Gaussian state-space form. Intuitively, this transformation allows us

to treat log-squared returns as a noisy signal of the latent log-variance. This representation is com-

putationally convenient and enables the application of the Carter and Kohn (1994) and Frühwirth-

Schnatter (1994) forward-filtering backward sampling (FFBS) algorithm for block updating of the

latent states conditional on the mixture indicators.

Let Θ = (m0, ϕ, σ
2
x,β

p,βv,βso, {xt}Tt=1) be the set of model parameters and latent states. We

employ standard proper, but not strongly informative, conjugate priors whenever possible. We

assume Gaussian priors for m0, ϕ, β
p, βv and βso. We assume m0 ∼ N(µm0 = ȳ∗, Vm0 = 2),
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where ȳ∗t = 1
T

∑T
t=1 log(y

2
t )+ 1.27 reflecting that the average ȳ∗t should proxy the log-variance level

while the constant 1.27 accounts for the expected value of log(ε2t ), which is distributed as log-χ2
1

(Ruiz, 1994). Due to the high persistence commonly observed in the stochastic volatility literature,

we assume a prior ϕ ∼ N(ϕ0 = 0.95, Vϕ0 = 0.25). We take a conservative approach by assuming

a prior belief of no time-of-day effects (neither fixed nor volume-driven) and no shift due to the

Sunday opening while also allowing for reasonable variability by considering {βp
k}

K−1
k=1 ∼ N(βp

0 =

0,Vβp
0
= 0.5IK−1), β

v ∼ N(βv
0 = 0,Vβv

0
= 0.5IK), and βso ∼ N(βso

0 = 0,Vβso
0

= 4Im) where I is

the identity matrix that corresponds to the dimensions of βp, βv and βso. We assume an Inverse

Gamma prior IG(ασx = 1, βσx = 10) for σ2
x reflecting the restriction of non negative variance.

Our choice of conditionally conjugate priors enables direct sampling from the conditional posterior

distributions using a Gibbs sampler, see Appendix B at the end of the manuscript for details.

3 In-sample results

This section illustrates the volume-driven time-of-day effects on intraday volatility. We first

quantify the relative importance of this channel through a variance decomposition of the latent log-

variance, and then examine the dynamic effects of above-average volume on volatility throughout

the trading day. We then turn to the remaining components of the log-variance decomposition

described in Equation (2).

3.1 Volume-driven intraday heterogeneity

Table 2 reports the variance decomposition of the latent log-variance ht, calculated at the

posterior parameter modes, into its persistent, static and volume-driven time-of-day, and Sunday-

opening components. We compute the decomposition as the ratio of the individual component

contribution to the total variability of the estimated volatility.

For the proposed model, across almost all assets (with the exception of WTI), the volume-

driven time-of-day component explains the largest share of variation, particularly for the Nasdaq

where it accounts for more than 45 percent of the total. The static time-of-day factor and the

persistent latent components also contribute meaningfully, while the Sunday-opening adjustment

has a small percentage share overall which is consistent with its rare occurrence relative to the high-
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Table 2: Variance decomposition

Persistence Deterministic ToD Sunday Open Volume ToD
(xt) (todpt ) (sot) (todvt )

Panel A: Nasdaq

Proposal 25.34 29.14 0.10 45.42
PSVO 70.69 29.02 0.29 –
PSV 70.49 29.51 – –

Panel B: S&P500

Proposal 36.08 24.87 0.10 38.94
PSVO 75.73 23.98 0.29 –
PSV 76.38 23.62 – –

Panel C: Euro

Proposal 24.13 36.41 0.08 39.38
PSVO 57.92 41.89 0.19 –
PSV 58.29 41.71 – –

Panel D: WTI

Proposal 34.93 31.98 0.11 32.98
PSVO 65.11 34.51 0.38 –
PSV 65.56 34.44 – –

This table reports the variance decomposition of the log-variance (ht) at the posterior
parameter modes into the latent persistent component (xt), periodic effect (todpt ), volume-
driven time-of-day component (todvt ), and Sunday-opening adjustment (sot). Entries are
normalized percentage shares.
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frequency sampling of intraday volatility. However, the Sunday open has an effect on volatility that

is statistically significant and economically meaningful.

When comparing the variance decomposition with that of the restricted models, two notable

features emerge: the reallocation of variability and the stability of the remaining components. In

particular, once the volume-driven component is included, almost all variability is transferred from

the persistent component. This leads to a dramatic reduction in the variance of the variance pa-

rameter (as reported in Appendix C), indicating a more stable volatility process. The improvement

reflects a meaningful reallocation of explained variability from unobserved persistence to observed

lagged trading volume, providing a more interpretable and data-driven structure. This, in turn,

translates into notable gains in one-step-ahead forecasting accuracy, as demonstrated in the sub-

sequent sections. Moreover, the share of explained variability remains largely stable, particularly

for the deterministic time-of-day effects, suggesting that incorporating lagged trading volume en-

hances model flexibility without distorting the core volatility dynamics. A plot illustrating the

component-wise volatility decomposition for a small subsample can be seen in Appendix E.

Figure 1 shows the posterior means of the volume-driven time-of-day effects in the standard

deviation scale, exp(βv/2), together with their 90 percent credible intervals, across Nasdaq, S&P

500, Euro, and WTI futures (Panels a–d). In all cases, exp(βv/2) is positive and significantly above

one, confirming that higher-than-typical lagged trading activity systematically amplifies volatility.

Moreover, the evolution of the estimated coefficients clearly exhibits non-constant patterns, indi-

cating that the effect of lagged volume on volatility varies over the trading day. This finding aligns

with the broader body of research on the relationship between trading volume and asset returns.

For example, McMillan (2007) highlight the nonlinear nature of this relationship and provide an

extensive overview of related contributions in the literature.

The figure also reveals an economically meaningful intraday structure. Almost all assets (except

for the Euro) show a pronounced decline in the impact of above-average trading volume at the

18:00 ET market reopening following the daily trading break. This pattern can be attributed

to two factors. First, the rise in volatility observed at reopening is largely captured by a spike

in the periodic component (see Figure 2). Second, at that point, the most recent lagged-volume

information comes from the previous trading session, which, from an economic perspective, should

have only a limited influence on volatility at the start of a new session. Spikes are also evident

13



(a) Nasdaq (b) S&P 500

(c) Euro (d) WTI

Figure 1: Volume-driven time-of-day effects

The plots show the posterior means of the volume-driven time-of-day effects in the standard deviation scale, exp(βv/2),

with 90% credible intervals, for Nasdaq, S&P 500, Euro, and WTI futures (Panels a–d). Values above one indicate

that above-average trading volume amplifies volatility. Vertical dashed lines represent the following daily events: UK

stock market opening (UK), US opening auction (Pre), US opening (US), future’s close (Close) and future’s opening

(Open).
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around key market times: for Nasdaq, S&P 500, and WTI futures, effects vary sharply near the U.S.

equity close (16:00 ET), while Euro futures display a sharp increase following the ECB fixing (8:15

ET). These patterns suggest that the interaction between intraday trading activity and volatility

is closely tied to global market coordination, emphasizing the importance of a dynamic, volume-

adjusted specification.

Overall, the in-sample analysis of volume-driven time-of-day effects shows that intraday fluc-

tuations in trading activity play a central role in shaping high-frequency volatility across all four

assets. These findings highlight the importance of accounting for lagged volume-related effects in

volatility modeling.

3.2 Static time-of-day, Sunday-opening and persistent volatility effects

Figures 2 and 3 illustrate the posterior means of the static time-of-day and Sunday-opening ef-

fects, on the standard deviation scale, exp(βp/2) and exp(βso/2), along with 90% credible intervals,

for Nasdaq, S&P 500, Euro, and WTI futures (Panels a–d).

Panels a) and b) of Figure 2 display the well-documented U-shaped intraday pattern during

regular U.S. trading hours (9:30 – 16:00 ET) for Nasdaq and S&P 500 futures (Andersen and

Bollerslev, 1997, 1998; Stroud and Johannes, 2014; Martins et al., 2025). Panels c) and d) show

similar U-shaped patterns for Euro and WTI futures, spanning from the London open (3:00 ET) to

early U.S. market trading hours and the historical pit trading hours (9:00 to 14:30 ET), respectively.

In all cases, peaks coincide with major market openings and closings, highlighting the role of

scheduled trading activity in shaping intraday volatility.

Figure 3 indicates a strong Sunday-opening effect with volatility rising nearly to 1.5-1.75 times

its baseline level in the first 5-minutes. However, this effect quickly dissipates within 30 minutes

from the opening.

Finally, Figure 4 shows the posterior means of the log-variance on the standard deviation scale,

exp(h/2), for each asset reflecting the combined effect of the persistence, static and volume-driven

time-of-day and Sunday-opening components. In all cases, the COVID19 pandemic is associated

with a clear spike in volatility. For the Euro, however, the pandemic was not the peak volatility

episode. Instead, the highest levels were observed in 2016–2017, plausibly reflecting the Brexit ref-

erendum, the U.S. presidential election, and elevated Eurozone political risk. Parameter estimation
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(a) Nasdaq (b) S&P 500

(c) Euro (d) WTI

Figure 2: Static time-of-day effects

Posterior means of the static time-of-day effects in the standard deviation scale, exp(βp/2), with 90% credible

intervals, for Nasdaq, S&P 500, Euro, and WTI futures (Panels a–d). A value of 1.5 indicates that volatility is 1.5

times is baseline level. Vertical dashed lines represent the following daily events: UK stock market opening (UK),

US opening auction (Pre), US opening (US), future’s close (Close) and future’s opening (Open).
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(a) Nasdaq (b) S&P 500

(c) Euro (d) WTI

Figure 3: Sunday-opening effects

Posterior means of the Sunday-opening effects in the standard deviation scale, exp(βso/2), with 90% credible intervals,

for Nasdaq, S&P 500, Euro, and WTI futures (Panels a–d).
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results for the proposed model and SV-based counterparts can be found in Appendix C at the end

of the manuscript.

(a) Nasdaq (b) S&P 500

(c) Euro (d) WTI

Figure 4: Estimated volatility

Estimated volatility calculated at the posterior parameter modes using the proposed stochastic volatility model,

exp(h/2), for Nasdaq, S&P 500, Euro, and WTI futures (Panels a–d).

4 Out-of-sample results and applications

Although achieving a good in-sample fit is important, the true measure of a model’s value lies in

its predictive performance and practical applicability. Our results demonstrate that the proposed

model performs exceptionally well on both fronts. We evaluate the one-step-ahead out-of-sample

performance of the four stochastic volatility models described in Table 1, a GARCH(1,1) and a

simple autoregressive realized volatility model (AR1–RV) for Nasdaq, S&P 500, Euro, and WTI

crude oil during the period from January 1, 2022 to August 30, 2024. For the SV models specified

in Table 1, we fix parameters on their in-sample posterior modes and rely on a particle filter
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Gordon et al. (1993) to update latent states. For GARCH and AR1–RV, we fix parameters on their

maximum likelihood estimates.

4.1 Volatility forecasts

We evaluate the one-step-ahead out-of-sample predictive performance using three complemen-

tary approaches. First, we consider the Mincer–Zarnowitz (MZ) regression, which provides a direct

test of forecast unbiasedness and efficiency. Specifically, 5-minute realized volatility, calculated

as the square root of the sum of squared one-minute returns during the corresponding 5-minute

window, is regressed on a one-step-ahead forecast produced by a competing model:

rvolt = α0 + α1v̂ol
model

t|t−1 + εt, εt ∼ N(0, σ2),

where v̂ol
model

t|t−1 denotes the forecasted volatility for period t made at time t − 1. Ideally, a model

should produce α0 = 0 and α1 = 1 with high explanatory power as measured by R2.

Second, we implement a horse-race regression to directly compare the forecasts of the proposed

specification against those of competing models. The regression is given by

rvolt = β0 + β1v̂ol
proposal

t|t−1 + (1− β1)v̂ol
competitor

t|t−1 + εt, εt ∼ N(0, σ2),

where the competitor is any alternative benchmark. If β1 = 1, the proposal dominates, while β1 = 0

implies that only the competitor contains all predictive information. Values of β1 greater than one

indicate that the competitor’s forecast contributes negatively once the proposal is included, further

reinforcing the superiority of the proposed approach.

Finally, we complement these regression-based diagnostics with the Diebold–Mariano (DM)

test of equal predictive ability, using both squared and absolute forecast errors. The DM statistic

evaluates whether differences in forecast accuracy across models are statistically significant, with

negative values favoring the proposal. Together, these metrics provide a comprehensive assessment

of the forecasting performance and their statistical significance.

Table 3 reports the combined results across all assets. Columns 2-4 present the MZ regression

estimates of α0, α1, and the associated R2. Columns 5–6 show the estimates of β1 and its t-statistic
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from the horse-race regressions. Columns 7–10 report average squared and absolute forecast errors

(scaled by 10−3) together with DM statistics relative to the proposal.

Table 3: Forecasting results

Mincer–Zarnowitz Horse–Race Squared Absolute

Model α̂0 α̂1 R2 β̂1 t(β̂1) Avg. ×10−3 DM Avg. ×10−3 DM

Panel A: Nasdaq

Proposal -0.001 1.027 0.748 – – 1.045 – 16.995 –
PSVO 0.005 0.901 0.553 1.167 396.075 1.880 -17.976 22.219 -106.798
PSV 0.006 0.896 0.546 1.153 402.542 1.912 -17.553 22.309 -105.609
SV 0.005 0.921 0.459 1.158 477.689 2.254 -21.750 24.771 -135.357
GARCH 0.005 0.913 0.421 1.107 503.270 2.414 -24.391 25.669 -135.500
AR1-RV 0.008 0.914 0.409 1.023 506.604 2.469 -22.543 25.759 -127.506

Panel B: S& P500

Proposal 0.000 1.033 0.733 – – 0.629 – 13.507 –
PSVO 0.005 0.896 0.550 1.214 375.134 1.070 -15.950 17.004 -99.825
PSV 0.005 0.894 0.544 1.197 380.797 1.086 -14.677 17.086 -99.179
SV 0.004 0.914 0.470 1.196 445.672 1.251 -17.575 18.729 -128.443
GARCH 0.003 0.949 0.433 1.134 466.908 1.330 -19.409 19.328 -129.089
AR1-RV 0.004 0.931 0.414 1.030 475.494 1.377 -19.013 19.881 -128.651

Panel C: Euro

Proposal 0.000 0.999 0.652 – – 0.157 – 7.581 –
PSVO 0.000 1.014 0.423 1.018 353.922 0.261 -16.876 8.624 -52.681
PSV 0.000 1.011 0.419 1.022 356.776 0.262 -16.867 8.635 -53.019
SV 0.001 0.994 0.373 1.001 390.275 0.283 -17.460 9.018 -66.215
GARCH 0.002 0.878 0.341 0.985 416.399 0.301 -19.840 9.614 -87.306
AR1-RV 0.002 0.983 0.293 0.965 443.572 0.320 -22.009 9.848 -91.742

Panel D: WTI

Proposal 0.009 0.966 0.689 – – 3.162 – 34.909 –
PSVO 0.012 0.896 0.470 0.900 373.737 5.406 -6.725 42.125 -71.654
PSV 0.013 0.888 0.453 0.905 387.348 5.578 -5.864 42.278 -71.132
SV 0.013 0.898 0.390 0.945 430.984 6.201 -6.702 45.334 -95.958
GARCH 0.018 0.779 0.356 0.934 471.039 6.875 -8.161 48.518 -109.681
AR1-RV 0.017 0.849 0.304 0.922 493.537 7.113 -7.960 49.060 -112.704

The table reports combined results for Mincer–Zarnowitz regressions, Horse-race regressions, and Diebold–Mariano tests
for one-step-ahead out-of-sample forecasting exercise for January 1, 2022 to August 30, 2024. The volatility proxy employed
is the 5-minute realized volatility.

Columns 2-4 report α̂0, α̂1, and R2 of the Mincer–Zarnowitz regressions, RVi = α0 + α1v̂ol
model

i|i−1 + εi.

Columns 5-6 report β̂1 and t(β̂1) testing H0 : β1 = 0 from the Horse-race regressions RVi = β0 + β1v̂ol
benchmark

i|i−1 + (1 −
β1)v̂ol

competitor

i|i−1 + εi.
Columns 8-10 report the Diebold–Mariano (DM) statistics compare predictive accuracy against the Proposal under squared
and absolute loss. Negative and statistically significant DM statistics indicate superior performance of the benchmark.

The MZ results show that the proposed model is consistently the best performing across all
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markets. In every case, α̂0 is closer to zero and α̂1 closer to unity than for competing models,

and R2 values are substantially higher. For instance, the R2 ranges from 0.65 for Euro futures

to 0.75 for Nasdaq, while the best competitor typically delivers values below 0.55. These results

indicate that the proposal produces forecasts that are both the closest of being unbiased and more

informative about realized volatility.

The horse-race regressions reinforce this finding. Across all assets, β̂1 lies very close to one and

is in some cases above unity, implying that once the forecast from the proposal is included, the

competitor adds little or even negative information. Taken together, the horse-race regressions show

that the proposal systematically outperforms its restricted variants (including traditional stochastic

volatility), GARCH, and RV-based benchmarks.

The DM tests provide formal evidence that these gains are statistically significant. Using both

squared and absolute forecast errors, the null hypothesis of equal predictive accuracy is overwhelm-

ingly rejected in favor of the proposal. The statistics are large in magnitude and consistently

negative, indicating that the proposed model achieves strictly lower forecast losses across equity,

currency, and commodity markets.

Overall, the evidence across all tests and assets consistently supports the superior performance

of including lagged volume-driven time-of-day effects. As a robustness check, we have checked the

forecasting performance using a different proxy for the volatility, namely, absolute 5-minute returns,

and the obtained results are identical, see Appendix D at the end of the manuscript for details.

4.2 Volatility-managed portfolios

An important question is whether the statistical gains in volatility forecasting documented

above translate into economically meaningful improvements. Moreira and Muir (2017) proposed

a volatility-managed portfolio strategy that directly exploits time-variation in expected risk. The

approach scales the portfolio’s exposure to the risky asset inversely with its forecasted volatility,

thereby reducing leverage in high-volatility periods and increasing exposure in low-volatility periods.

Intuitively, if volatility is predictable, then risk-adjusted returns, as measured by the Sharpe ratio,

can be improved by dynamically adjusting risk rather than holding a constant exposure.

Formally, the return on the volatility-managed portfolio, yvmt , in each period t is given by
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yvmt =
c

volmodel
t|t−1

yt,

where, as before, volmodel
t|t−1 denotes the forecasted volatility for period t made at time t− 1, yt is the

asset return and c is a constant chosen to ensure yvmt and yt have the same unconditional volatility2.

Table 4 reports the performance of volatility-managed portfolios across Nasdaq, S&P 500, Euro

and WTI futures. For each asset, we present average annualized returns (in percent) and annualized

Sharpe ratios for the unmanaged (buy and hold) benchmark and for volatility-managed strategies

based on competing volatility models.

Table 4: Volatility-managed portfolios

Nasdaq S&P 500 Euro WTI

Avg Sharpe Avg Sharpe Avg Sharpe Avg Sharpe

Not Managed 0.03 0.14 0.04 0.19 -0.03 -0.37 0.07 0.17

Proposal 0.79 3.28 0.64 3.52 0.00 0.05 0.32 0.81
PSVO 0.38 1.56 0.30 1.61 -0.02 -0.28 0.20 0.50
PSV 0.38 1.56 0.30 1.61 -0.03 -0.31 0.24 0.60
SV 0.22 0.90 0.21 1.15 -0.04 -0.52 0.12 0.31
GARCH 0.12 0.49 0.12 0.64 -0.05 -0.56 0.10 0.25
AR1-RV 0.22 0.93 0.14 0.74 -0.04 -0.46 0.12 0.31

The table reports annualized average returns (Avg) and Sharpe ratios for unmanaged portfolios
and for volatility-managed strategies based on competing volatility models. Results are shown for
Nasdaq, S& P500, Euro, and WTI futures.

Two key patterns emerge. First, volatility management delivers large economic gains relative to

the unmanaged portfolios: Sharpe ratios increase markedly, particularly for equity index futures.

For example, in the S&P 500 and Nasdaq, the Sharpe ratios of the unmanaged portfolios are 0.19

and 0.13, respectively, but rise above 3.0 under our proposed specification. Second, across all assets,

the proposal dominates competing approaches (PSVO, PSV, SV, GARCH, and AR1-RV), yielding

consistently higher average returns and Sharpe ratios. These improvements reflect the proposal’s

ability to better time volatility and hence scale exposure more effectively.

The benefits are especially pronounced in equity index futures, where risk timing appears most

valuable, but meaningful gains are also present in commodities (WTI) and currencies (Euro).

In contrast, traditional SV and GARCH-based strategies yield relatively modest improvements,

2As explained in Moreira and Muir (2017), the choice of c does not affect the Sharpe ratio.
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while AR1-RV often fail to deliver positive economic gains. Overall, Table 4 highlights that more

accurate high-frequency volatility forecasts translate directly into superior portfolio performance

when applied in a volatility-managed framework.

5 Conclusion

This paper develops a framework for modeling high-frequency volatility that jointly accounts for

persistent behavior, static time-of-day adjustments, and volume-driven time-of-days effects. By con-

ditioning intraday periodicity on past trading volume, our model captures timely and economically

relevant deviations from static volatility patterns, providing a more accurate and microstructure-

consistent description of intraday risk dynamics.

Across equity indexes, currency, and commodity futures, the volume-driven component explains

a large share of intraday volatility variation, highlighting the importance of conditioning on trading

activity. The model not only reproduces well-known U-shaped volatility patterns but also uncovers

features associated with global trading activity. It indicates that the deviations from the time-of-day

average volume are deeply tied to volatility. Our results complement the Sequential Information

Arrival Hypothesis (SIAH) literature by showing that the lead–lag relationship between trading

volume and volatility also holds in a high-frequency setting. Moreover, we find that the strength of

this relationship is time-varying: information flows shape return volatility differently depending on

which market is open at a given time. Nonetheless, the relationship remains consistently statistically

significant.

Out-of-sample forecast comparisons provide strong evidence in favor of the proposed specifica-

tion. In Mincer–Zarnowitz regressions, our model yields intercepts close to zero, slopes close to one,

and the highest explanatory power across all assets. Horse-race regressions confirm that once our

forecasts are included, those from competing models contribute little to none additional informa-

tion. Moreover, Diebold–Mariano tests overwhelmingly reject equal predictive accuracy and favor

our specification under both squared and absolute loss functions. The results are robust even when

different volatility proxies are used. Together, these findings indicate that the model provides the

most accurate forecasts of realized volatility among the alternatives considered.

From an economic perspective, these statistical improvements translate into superior portfolio
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performance. When applied to volatility-managed investment strategies, our forecasts consistently

improve Sharpe ratios relative to unmanaged benchmarks and competing volatility models. The

benefits are most striking in equity index futures, where dynamic exposure based on our specifi-

cation more than triples the Sharpe ratio compared to GARCH or standard stochastic volatility

alternatives. Overall, our results suggest that lagged trading volume provides a critical dimension

for understanding and forecasting intraday volatility.

Declaration of generative AI and AI-assisted technologies in the

writing process

During the preparation of this work the authors used ChatGPT in order to check for grammar

errors and improve readability. After using this tool/service, the authors reviewed and edited the

content as needed and take full responsibility for the content of the publication.
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A Appendix: Descriptive statistics and plots

Table 5 reports the summary statistics of five-minute log-returns and trading volumes for the

Nasdaq, S&P 500, Euro, and WTI futures over the sample period from January 2016 to August

2024. As expected, returns exhibit near-zero means with substantial excess kurtosis and negative

skewness (except for Euro), reflecting the leptokurtic and asymmetric nature of high-frequency

financial returns. Unconditional volatility (as captured by standard deviation) is highest for WTI

and lowest for the Euro. Trading volumes vary considerably across assets, with the S&P 500

showing the largest average volume, consistent with its market depth and liquidity.

Table 5: Summary statistics

Mean Std Q2 Min Max Skew Kurt nins noos

Panel A: Nasdaq

Return (percent) 0.000 0.084 0.000 -4.304 2.828 -0.953 85.482 420713 189182
Volume (1,000 contracts) 1.693 2.758 0.509 0.000 44.085 3.130 16.748 – –

Panel B: S&P 500

Return (percent) 0.000 0.069 0.000 -4.194 2.782 -1.199 139.143 420746 189182
Volume (1,000 contracts) 5.444 9.793 1.369 0.000 275.823 4.823 50.257 – –

Panel C: Euro

Return (percent) 0.000 0.029 0.000 -1.045 1.531 0.246 61.937 425077 190208
Volume (1,000 contracts) 0.644 0.896 0.386 0.000 44.343 6.304 91.629 – –

Panel D: WTI

Return (percent) 0.000 0.196 0.000 -41.388 30.118 -14.365 5672.061 424924 189443
Volume (1,000 contracts) 1.297 2.155 0.563 0.000 93.090 5.659 70.710 – –

The table reports summary statistics of the 5-minute log-returns (in percentage) and trading volumes (1,000 contracts) for two
market indices (Nasdaq and S&P 500), exchange rate (Euro) and commodity (WTI) from January 3, 2016 to August 30, 2024. nins

and noos stand for the number of observations in-sample and out-of-sample.

Figure 5 complements the descriptive statistics table by illustrating the joint dynamics of ab-

solute returns (in black, scale on the left) and trading volumes (1,000 contracts, in gray, inverted

scale in the right). Both series display pronounced clustering, particularly around major market

stress episodes such as the 2020 volatility spike. The mirror plotting permits to illustrate the close

co-movement between return volatility and trading activity: periods of heightened volatility tend

to coincide with elevated trading volumes.

25



(a) Nasdaq (b) S&P 500

(c) Euro (d) WTI

Figure 5: Descriptive plots

The plots draw the evolution of absolute 5-minute log-returns, in black (scale on the left) and volume, in gray (1,000

contracts, inverted scale on the right) from January 3, 2016 to August 30, 2024 for Nasdaq, S&P 500, Euro and WTI

(Panels a-d).
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B Appendix: MCMC algorithm

Our proposed model described in Section 2.2 is defined by Equations (1) - (7). To facilitate

efficient sampling, we apply log-linearization to Equation (1) and approximate ut = log(ε2t ) with

a finite mixture of seven Gaussian components (Kim et al., 1998). A summary of the equations

required for sampling as follows,

log(y2t ) = ht + ut with ut ∼ N(µc,t, σ
2
c,t),

ht = m0 + xt + todpt + todvt + sot,

xt = ϕxt−1 + σxηx,t with ηx,t ∼ N(0, 1),

todpt = I′tβ
p with

K∑
k=1

βp
k = 0,

todvt = vt−1I
′
tβ

v,

sot = H′
tβ

so.

Let Θ = (m0, ϕ, σ
2
x,β

p,βv,βso, {xt}Tt=1) be the set of model parameters and latent states. And

let Ψ be all the parameters in Θ except the ones we sample from in a given step of the MCMC

chain. For each iteration the MCMC scheme samples from the following full conditional posterior

distributions.

1) Sample ϕ|Ψ,y from a conjugate Gaussian distribution. We consider the persistent equation

as a linear regression, xt ∼ ϕxt−1. Then the conditional posterior distribution of ϕ is a conjugate

Gaussian distribution given a Gaussian prior and a Gaussian likelihood. We have that

ϕ|Ψ,y ∼ N(ϕ̂, V̂ϕ),where

V̂ϕ =

(
1

Vϕ0

+
1

σ2
x

T∑
t=1

xt−1xt−1

)−1

,

ϕ̂ = V̂ϕ

(
ϕ0

Vϕ0

+
1

σ2
x

T∑
t=1

xtxt−1

)
.

2) Sample σ2
x|Ψ,y from a conjugate inverse Gamma distribution. We use the linear representa-

tion of the persistent component. The conditional posterior distribution of σ2
x is a conjugate inverse
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Gamma distribution due to an inverse Gamma prior and a Gaussian likelihood. We have that

σ2
x|Ψ,y ∼ IG

(
αση +

T

2
, βση +

∑T
t=1(xt − ϕxt−1)

2

2

)
.

3) Sample the mixture component {ct, µc,t, σ
2
c,t}Tt=1|Ψ following (Kim et al., 1998). We first

sample {ct}Tt=1 from the posterior probability

π (ct = c | Ψ) ∝ P (ct = c)
1

σc
exp

{
−(ut − µc)

2

2σ2
c

}
,

where P (ct = c) is the mixture weight of the c th Gaussian component with mean µc and variance

σ2
c (Kim et al., 1998). Then set the {µc,t, σ

2
c,t}Tt=1 as the mean and variance of the ct th Gaussian

component.

4) Sample {xt}Tt=1|Ψ,y following in Carter and Kohn (1994) and Frühwirth-Schnatter (1994).

We rewrite the model in terms of measurement and state equations as,

log y2t −m0 − todpt − todvt − sot = xt + ut,

xt = ϕxt−1 + σxηx,t.

We sample the conditional posterior distribution of {xt}Tt=1 from a Gaussian linear state space

model using the Forward Filtering Backward Sampling (FFBS) algorithm.

5) Sample m0|Ψ,y from a conjugate Gaussian distribution. We rewrite the log-linearized model

as a linear regression,

log y2t − xt − todpt − todvt − sot = m0 + ut.

The conditional posterior distribution of m0 is a Gaussian distribution due to a Gaussian prior and

a Gaussian likelihood. We have that

m0|Ψ,y ∼ N(µ̂m0 , V̂m0),

V̂m0 =

(
V −1
m0

+
T∑
t=1

1

σ2
c,t

)−1

,

µ̂m0 = V̂m0

(
V −1
m0

µm0 +
T∑
t=1

1

σ2
c,t

(log y2t − xt − todpt − todvt − sot − µc,t)

)
.
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6) Sample {βp
k}

K−1
k=1 |Ψ,y from a conjugate Gaussian distribution. We rewrite the log-linearized

model as a linear regression,

log y2t −m0 − todvt − sot = I′tβ
p + ut,

=
K−1∑
k=1

(It,k − It,K)βp
k + ut.

Then the conditional posterior distribution of {βp
k}

K−1
k=1 is a conjugate Gaussian distribution due to

a Gaussian prior and a Gaussian likelihood. We have that,

{βp
k}

K−1
k=1 |Ψ,y ∼ N(β̂

p
, V̂βp),

V̂βk
=

(
V−1

βp
0
+

T∑
t=1

1

σ2
ct

Ĩ
′
tĨt

)−1

,

β̂
p
= V̂βk

(
V−1

βp
0
βp
0 +

T∑
t=1

1

σ2
ct

Ĩ
′
t(log y

2
t −m0 − todvt − sot − µc,t)

)
,

where Ĩt = (It,1 − It,K , . . . , It,K−1 − It,K), and set βp
K = −

K−1∑
k=1

βp
k .

7) Sample βv|Ψ,y from a conjugate Gaussian distribution. We rewrite the log-linearized model

as a linear regression,

log y2t −m0 − todpt − sot = vt−1I
′
tβ

v + ut.

Then the conditional posterior distribution of βv is a conjugate Gaussian distribution due to a

Gaussian prior and a Gaussian likelihood.

βv|Ψ,y ∼ N(β̂
v
, V̂βv),

V̂βv =

(
V−1

βv
0
+

T∑
t=1

1

σ2
ct

v2t−1I
′
tIt

)−1

,

β̂
v
= V̂βv

(
V−1

βv
0
βv
0 +

T∑
t=1

1

σ2
ct

vt−1I
′
t(log y

2
t −m0 − todpt − sot − µc,t)

)
.

8) Sample βso|Ψ,y from a conjugate Gaussian distribution. We rewrite the log-linearized model

as a linear regression,

log y2t −m0 − todpt − todvt = H′
tβ

so + ut.
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Then the conditional posterior distribution of βso is a conjugate Gaussian distribution due to a

Gaussian prior and a Gaussian likelihood. We have that

βso|Ψ,y ∼ N(β̂
so
, V̂βso),

V̂βso =

(
V−1

βso
0

+

T∑
t=1

1

σ2
ct

H′
tHt

)−1

,

β̂
so

= V̂βso

(
V−1

βsoβ
so
0 +

T∑
t=1

1

σ2
ct

H′
t(log y

2
t −m0 − todpt − todvt − µc,t)

)
.
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C Additional estimation results

Table 6 reports the posterior modes of the estimated model parameters for the proposed model

and its restricted specifications across the four asset classes. Across all assets, the persistence

parameter ϕ is close to unity, indicating a high degree of volatility persistence typical of high-

frequency financial data. Since there are 276 coefficients in βp and βv vectors, and 6 more in

βso vector, we report the minimum and maximum posterior modes for each vector. Interestingly,

the inclusion of volume-driven time-of-day effects considerably reduces the variance of the volatility

process σx, resulting in more stable volatility dynamics. The rest of the parameters remain relatively

similar across models. Overall, the results confirm that incorporating trading volume and time-of-

day information enhances model flexibility without distorting the core volatility structure.

Table 6: Estimated model parameters

m0 ϕ σx min(βf ) max(βf ) min(βso) max(βso) min(βv) max(βv)

Panel A: Nasdaq

Proposal -15.848 0.997 0.006 -1.375 2.904 0.101 1.098 0.956 1.792
PSVO -15.688 0.986 0.051 -1.359 2.737 0.594 2.368 - -
PSV -15.684 0.986 0.052 -1.358 2.728 - - - -
SV -15.657 0.975 0.132 - - - - - -

Panel B: S&P 500

Proposal -16.204 0.996 0.007 -1.610 2.332 0.144 1.047 0.715 1.589
PSVO -16.076 0.986 0.056 -1.305 2.209 0.508 2.378 - -
PSV -16.068 0.985 0.058 -1.308 2.211 - - - -
SV -16.073 0.974 0.138 - - - - - -

Panel C: Euro

Proposal -17.191 0.996 0.004 -1.209 1.691 0.120 0.847 0.665 1.438
PSVO -17.077 0.970 0.039 -1.210 1.953 0.236 1.567 - -
PSV -17.079 0.970 0.040 -1.209 1.945 - - - -
SV -17.077 0.969 0.071 - - - - - -

Panel D: WTI

Proposal -14.686 0.998 0.005 -1.445 2.345 -0.005 0.855 0.903 1.904
PSVO -14.178 0.975 0.065 -1.428 2.239 0.338 2.503 - -
PSV -14.176 0.975 0.068 -1.436 2.236 - - - -
SV -14.193 0.965 0.148 - - - - - -

The table reports the posterior modes of the estimated model parameters for the proposed model and its restricted speci-
fications across the four asset classes.
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D Robustness check

As a robustness check for the forecasting exercise, we employ a different proxy for the volatility:

instead of the square root of the realized variance, we consider the absolute value of the 5-minute

return, see Table 7. The model ordering remains the same, with the Proposal being vastly superior

as compared to its restricted variants and other standard benchmarks.
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Table 7: Forecasting results: Robustness check

Mincer–Zarnowitz Horse–Race Squared Absolute

Model α̂0 α̂1 R2 β̂1 t(β̂1) Avg. ×10−3 DM Avg. ×10−3 DM

Panel A: Nasdaq

Proposal -0.006 0.943 0.490 - - 2.823 - 31.850 -
PSVO 0.004 0.765 0.309 1.384 293.043 3.964 -21.907 37.305 -105.919
PSV 0.004 0.760 0.305 1.358 295.675 3.996 -21.371 37.390 -104.369
SV 0.004 0.771 0.250 1.253 319.475 4.218 -22.786 38.696 -112.132
GARCH 0.004 0.768 0.231 1.156 324.796 4.323 -23.751 39.333 -109.830
AR1-RV 0.006 0.773 0.228 1.051 321.870 4.275 -21.013 38.278 -85.750

Panel B: S&P 500

Proposal -0.004 0.941 0.468 - - 1.675 - 24.882 -
PSVO 0.003 0.763 0.307 1.430 276.387 2.281 -20.414 28.661 -102.956
PSV 0.003 0.760 0.302 1.400 278.412 2.298 -19.280 28.744 -102.199
SV 0.003 0.768 0.255 1.296 299.577 2.406 -20.060 29.639 -110.099
GARCH 0.001 0.802 0.238 1.167 297.640 2.430 -20.008 30.009 -106.839
AR1-RV 0.002 0.789 0.229 1.046 300.188 2.455 -19.788 30.064 -96.058

Panel C: Euro

Proposal -0.003 0.930 0.409 - - 0.389 - 13.140 -
PSVO 0.000 0.850 0.215 1.118 253.551 0.510 -17.474 14.369 -58.896
PSV 0.000 0.846 0.213 1.122 255.654 0.512 -17.483 14.379 -59.105
SV 0.000 0.829 0.188 1.062 269.859 0.527 -17.227 14.582 -62.531
GARCH 0.001 0.730 0.171 1.047 288.372 0.565 -21.770 15.496 -94.749
AR1-RV 0.001 0.818 0.147 0.978 292.442 0.549 -19.088 14.924 -66.439

Panel D: WTI

Proposal -0.008 0.924 0.466 - - 7.584 - 57.715 -
PSVO 0.007 0.753 0.246 1.087 294.715 11.082 -10.445 67.913 -93.122
PSV 0.008 0.744 0.235 1.080 301.904 11.248 -8.954 68.051 -91.973
SV 0.009 0.744 0.197 1.074 320.596 11.656 -9.047 69.765 -102.277
GARCH 0.013 0.648 0.182 1.045 344.360 12.847 -11.621 75.028 -130.779
AR1-RV 0.013 0.702 0.153 0.989 345.214 12.381 -9.697 72.466 -107.081

The table reports combined results for Mincer–Zarnowitz regressions, Horse-race regressions, and Diebold–Mariano tests
for one-step-ahead out-of-sample forecasting exercise for January 1, 2022 to August 30, 2024. The volatility proxy employed
is the absolute value of 5-minute returns.
Columns 2-4 report α̂0, α̂1, and R2 of the Mincer–Zarnowitz regressions, RVi = α0 + α1v̂ol

model

i|i−1 + εi.

Columns 5-6 report β̂1 and t(β̂1) testing H0 : β1 = 0 from the Horse-race regressions RVi = β0 + β1v̂ol
benchmark

i|i−1 + (1 −
β1)v̂ol

competitor

i|i−1 + εi.
Columns 8-10 report the Diebold–Mariano (DM) statistics compare predictive accuracy against the Proposal under squared
and absolute loss. Negative and statistically significant DM statistics indicate superior performance of the benchmark.
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E Volatility components

Figure 6 presents the total and component-wise volatility comparison between the proposed

model and its restricted variant, PSVO, for a small subsample (two weeks) to facilitate readability.

The proposed model is shown in gray, and the restricted PSVO model in black. The top plot

displays the total volatility on a standard deviation scale. We observe that the estimated overall

volatility is very similar across both models, confirming that both specifications capture the same

underlying process.

The bottom four plots show the component-wise volatility decomposition for both models. The

most striking differences appear in the persistence component, xt. The proposed model estimates

a smooth path for persistence, while the restricted model produces extremely noisy trajectories.

These discrepancies arise because the proposed model incorporates the volume-driven component,

which captures much of the variability through lagged log-volume shown in the bottom right plot.

When this component is omitted, all variability is absorbed by the persistence component, making

it more volatile and noisy, leading to less precise forecasts.

The remaining volatility components - namely, the periodic time-of-day (todpt ) and Sunday-open

(sot) effects - are nearly identical across both models. This further confirms that incorporating

lagged trading volume enhances model flexibility without distorting the core volatility dynamics.

In essence, the addition of the lagged volume to the model redistributes hard-to-predict uncertainty

from the persistence term to the more predictable deterministic lagged-volume component.
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Figure 6: Estimated volatility for the proposed model (thick gray line) and the restricted PSVO
variant (thin black line) for 2 weeks in January 2016. The top plot draws the overall volatility
in the standard deviation scale, the rest of the plots draw the volatility components, also in the
standard deviation scale.
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