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Abstract

Probabilistic editing has been introduced to enable valid inference us-
ing established survey sampling theory in situations when some of the
collected data points may have measurement errors and are therefore
submitted to an editing process. To reduce the editing effort and
avoid over-editing, in current practice selective editing is most often
used, which is a form of editing that limits the edit checks to those
potential errors that, if indeed in error, are likely to have the biggest
impact on estimates to be produced. However, selective editing is
not grounded in probability theory associated with survey sampling,
and cannot provide expressions for point and variance estimates that
account for the uncertainties introduced by selective editing.

In the spirit of the total survey error paradigm, this paper extends
the previous work on probabilistic editing by proposing an estimation
procedure that provides valid inference when two kinds of nonsam-
pling error are simultaneously present, in addition to the sampling
error: the measurement error, requiring an editing step, and the prac-
tically unavoidable nonresponse error which also needs to be taken
into account when producing unbiased estimates.

In a three-phase selection setup, bias due to measurement error
is estimated through probabilistic editing while weight adjustment
employing auxiliary information is used to deal with nonresponse. An
estimator based on calibration for nonresponse and corrected for bias
due to measurement error is introduced. Its theoretical variance and
an estimator of the variance are derived. A simulation study illustrates
the three-phase selection setup and the practical performance of the
derived point and variance estimators.
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1 Introduction

Probability sampling theory enables valid inference from a sample to the
population that it was selected from by providing correct expressions to ac-
count for the sampling error - namely for the fact that just a subset of the
population has been observed and measured.

To develop the theory of sampling, its pioneers started from abstract,
idealised situations where all the data that theoretically needed to exist did
exist, and correctness of the data was not in question: all the values were
present and perfectly measured. While such an idealisation was needed in
order to establish the field, in reality sampling frames are imperfect, not all
units are responding and the responses given may not be correct. Nonre-
sponse, frame errors and measurement errors belong to the group of survey
error types jointly called nonsampling error (Groves, 1989;, Lessler and Kals-
beek, 1992; Biemer and Lyberg, 2003). Nonsampling errors can occur not
only in survey data, but also in register data, administrative files, as well as
in censuses. They are problematic because they arise outside of control of
the survey statistician, their effects on the estimates and on the precision of
the estimates are usually unknown, and it is difficult to evaluate the effects
even when resources have been allocated for that purpose.

While insights about needing a more encompassing view originated much
earlier (Platek and Sarndal, 2001, section 8, give references starting from the
1950s), a concerted effort towards trying to build both theory and practice
around embracing all error sources simultaneously started to happen early in
the new millennium. The resulting total survey error (TSE) paradigm seeks
optimal survey design by minimizing TSE subject to constraints (Biemer,
2010). Formally, TSE is composed of a bias and a variance component for
each of the identified error sources, and their covariances. While regular
workshops and occasional edited volumes and journal special issues mark
clear steps in the outlined direction, the applications are still encompassing
only a few error sources at the most, and measurement of the TSE is chal-
lenging. However, the insight of the interdependence of the error sources,
and therefore of the need to treat them simultaneously, is important. In this
paper, therefore, an earlier development of partial editing is here extended
to include treatment of nonresponse as well.

Editing is an important process in statistics production. Its purpose is to
address measurement errors but it also some errors occurring in data process-
ing (Biemer and Lyberg, 2003). Granquist and Kovar (1997, referring to an
earlier work of Granquist) define its goals as ”to provide information about
the quality of the data, to provide the basis for the (future) improvement of
the survey vehicle, and to tidy up the data”. It is also a rather resource-



demanding and costly operation, estimated to consume between 20% and
40% of the total survey budget (ibid.) and therefore producers of statistics
have put efforts into finding ways to reduce the work on editing (partial edit-
ing) and to make it automatic (automatic editing) (de Waal et al., 2011,
chapters 3-6).

An alternative description of editing, ” [w]here data are considered incor-
rect, missing, unreliable or outdated, new values may be inserted or outdated
data may be removed|...]” (UNECE, 2019), indicates that there is consider-
able liberty in choosing if, and what, to remove and what to insert. Random-
ness of this process is ordinarily not taken into account in point estimation
and variance estimation. In other words, the inference - after editing - ordi-
narily continues as if all the resulting data, so in particular the edited data,
have been provided in the original data collection stage (that is, as if no
editing has been performed). But, in reality this doesn’t hold as selection
for editing introduces an additional source of variance, just like sampling,
measurement, and so on, do. Therefore, in particular variance estimates of
the point estimates not taking this source of error into account are likely
downwards biased.

Probabilistic editing (Ilves and Laitila, 2009; Ilves, 2012) was developed
to provide a probabilistic framework for inference on data that involve an
editing step. While keeping the partial editing idea of selective editing, prob-
abilistic editing expands the former by taking a probability sample from the
observations, with or without a selective editing step performed prior to this
(the cases C} and Cj in Ilves and Laitila, 2009). In either case, probabilistic
editing provides foundation for unbiased estimation, enabling expression of
the total uncertainty (sampling and editing) in the point estimate, something
that selective editing lacks.

In this paper an estimator is introduced that incorporates yet another
error source - the nonresponse - into the previously developed probabilistic
editing approach. It does so by combining weights adjustment for nonre-
sponse and the probabilistic selection for editing in order to enable valid
inference when both nonresponse and measurement errors are present in a
sample survey. The main contribution of the paper is the derivation of the
point estimator and its variance, as well as of the corresponding variance
estimator, for the situation when both of these nonsampling errors need to
be dealt with.

Section 2 gives an overview of literature regarding treatment of nonre-
sponse, of measurement error, and editing, and of ways to deal with both
error sources at the same time. Section 3 introduces a sampling design allow-
ing a description of the sampling of units, the response set generation and
of the setup for probabilistic editing, and presents an unbiased point esti-



mator accounting for nonresponse and measurement error. The variance of
the estimator and an estimator of the variance are derived in Section 4, and
the results from a simulation study are presented in Section 5. The paper
concludes with a discussion in Section 6.

2 The research subject in the literature

This literature review section gives a brief summary of main issues and some
developments regarding nonresponse error and measurement error. This is
not, in either case, a comprehensive treatment of these areas, which are
well covered in other sources; rather, it is a selective outline that primarily
focuses on the approaches and techniques that have a bearing on the content
developed further on in this paper.

2.1 Nonresponse

Nonresponse refers to the failure to obtain, from some of the sampled units
(persons, households, business units), data measuring the variables that the
survey aims to produce statistics about. This can be due to noncontact,
refusal to participate, or inability to provide a response (Groves et al., 2004,
chapter 6). The result can be a unit nonresponse or an item nonresponse
(ibid.). Occurrence of nonresponse impacts the ability to produce correct
estimates, both by potentially impacting the correct level (the point estimate)
and by reducing the number of observations on which the variance of the
point estimate is based, thus impacting the precision of the estimate.

Efforts to deal with nonresponse fall into two broad categories: reducing
and adjusting (de Leeuw et al., 2008a; Lynn, 2008). The former focuses on
designing surveys so as to minimise occurrence of nonresponse. This means
paying particular attention to construction of the measurement instrument,
choice of the data collection mode, training of interviewers, skilled use of
incentives, and so on. The latter focuses on choosing best ways to statisti-
cally adjust the estimates so as to take account of the nonresponse that has
occurred.

There are also some hybrid approaches, developed with the goal to im-
prove the estimation (reduce the bias and variance of the estimates) but
achieved through intervention at early stages of a survey, like its design or
the data collection. For instance, an early way of taking nonresponse into
account in inference, by Hansen and Hurwitz (1946), consisted of designing
the sampling to take place in two phases, the latter of which was among
the nonrespondents of the first sampling phase. Another, more recent set of



hybrid approaches, referred to as adaptive or responsive designs (Groves and
Heeringa, 2006; Schouten et al., 2017; Chun et al., 2018), concentrates on
activities conducted at the data collection stage of a survey. There the data
collection is guided by the real-time observed nonresponse patterns and indi-
cators of other nonsampling errors, by available existing information about
all the sample members (yet surveyed or not), and by process data from the
data collection. The aim is to prioritize data collection from the sampled
units in such a way that will lead to a least (estimated) bias due to non-
response and/or other nonsampling errors in the estimates that are to be
produced.

Co-occurring with the increase in prominence of the total survey error
paradigm, notable is a shift from the earlier focusing on a particular error
source and its quality indicator to its impact on the final estimate, through
the estimate’s total bias and variance (i.e. the total mean squared error).
For nonresponse, the shift means refocusing from the nonresponse rate in
itself (de Heer, 1999; de Leeuw and de Heer, 2002; Willimack et al., 2002)
to bias caused by the nonresponse (Groves, 2006; Groves and Peytcheva,
2008). Increasingly evident became an understanding that the relation be-
tween nonresponse and bias is not consistent or strong, and that the strength
of the relation varies between the variables in the same survey but also—in
meta-analyses—between surveys (Groves and Peytcheva, 2008; Brick and
Tourangeau, 2017). Evidence of an additional weak relation comes from a
further meta-analysis, by Peytcheva and Groves (2009). It concerns the rela-
tion between demographic variables and nonresponse. Because demographic
variables may often be known for the whole sample (be it respondents or
not) or even the whole population, they have standardly been used for ad-
justing for nonresponse (Bethlehem, 1988; Sérndal and Lundstrom, 2005)
and, later, as one of the data sources to guide data collection in adaptive
and responsive designs (Schouten et al., 2009; Lundquist and Sarndal, 2013).
The prerequisite for their use is that there is a relation between them and the
nonresponse. However, based on the meta-analysis, Peytcheva and Groves
(2009), concluded that the difference between respondent and nonrespondent
means for demographic variables is not predictive of the difference between
respondent and nonrespondent means for study variables of the same survey.
Schouten and colleagues (Schouten et al., 2009), Brick (2013), and Haziza
and Lesage (2016) give distinct examples (own, of others, and based on sim-
ulation, respectively) of counterproductive effect of simplistic applications of
nonresponse reducing efforts in data collection or during adjustment: the
effect of such applications was an increase in bias of the point estimates.

In summary, relation between nonresponse, demographic variables, and
bias is far from simple. Therefore, it invites caution, thought, and as good a



knowledge as possible about the relation of the study variable, nonresponse,
and demographic and other auxiliary information for the particular survey
and for each of its study variables, in order to apply any of these approaches
for the purpose of successfully reducing bias due to nonresponse.

2.1.1 Calibration under nonresponse

Calibration (Deville and Sarndal, 1992) is a class of point and variance esti-
mators in the presence of auxiliary information (demographic, register, ad-
ministrative or other) about units in the population. It adjusts the original
sampling weights to those closest ones (under a distance function) that, when
applied to the auxiliary information of the sample, result in known totals of
these auxiliary variables for the population. Any particular instance of ap-
plication of calibration assumes a specification of the distance function and
the auxiliary information. The technique does not require a formal specifica-
tion of a model of the relationship between the study variables and auxiliary
variables, but - under certain specifications - generalised regression estima-
tors (Sarndal and Swensson, 1987; Sérndal et al., 1992, chapters 6-8) and
calibration estimators coincide (Deville and Sarndal, 1992). The technique
was developed with the assumption of full response.

Applications of calibration to situations with nonresponse followed (Lund-
strom and Sarndal, 1999). In the already established tradition (e.g. Sdrndal
and Swensson, 1987), the response set r is viewed as a result of a second
selection, referred to as 'the response mechanism’ because it is not a formal
selection among the sampled units with known inclusion probabilities or un-
der control of the survey statistician. However, with auxiliary information
available, the calibration approach can be used to—presented intuitively—
first calibrate on the basis of the auxiliary information for the sample s, and
then on the basis of the auxiliary information for the population U. This
can be done in several ways, involving one of the two two-steps procedures
or a single-step procedure; see Sdarndal and Lundstrém (2005, chapter 8)
and a caution in for instance Haziza and Lesage (2016). A number of cases
in which auxiliary information may be available and used are discussed by
Estevao and Sérndal (2002).

Here, a brief formal exposition based on that of Deville and Sarndal (1992)
and Sérndal and Lundstrém (2005) is given.

The finite population U consists of N units, U = {1, ..., k, ..., N}, where k
indexes the kth unit in the population under some fixed ordering. Of interest
is a population function of the study variable y, for instance its total, ¢,,
where



ty = j{::yk.
keU
From U a sample s, of size n, is drawn using a probability mechanism
with the known probability p(s,). The resulting inclusion probabilities m; =
Pr(k € s,) are by design positive and known for each unit. The reciprocal
of . is the design weight, dj, thus dy, = 1/m.
A possible point estimator for a population total is

tyr = Z dyyr,
k€E€sq
the Horvitz-Thompson (HT) estimator (Sarndal et al., 1992).

With an auxiliary variable! z known for example for each unit k in the
population and positively related to y, the estimation can be improved on
the intuition similar to that for the ratio or regression estimator (Cochran,
1977, chapters 6-7). Calibration consists of finding a set of weights wy, that,
when applied to z values x; of the units k in s,, will reproduce the known
population total for z, and be as close as possible to the design weights dy
with respect to a distance function. Two constraints are involved. The first
is the calibration equation,

E WET = Ty,

kEsq
where ¢, can either be calculated on the basis of data available for the whole
population, t, = >, ;; Ty, or is known from an external source (though some
consistency problems may arise in the latter case). The second is a specified
distance function between the original and the revised weights, for instance
a chi-square (squared Euclidean) type of distance

> (wy = dp)?/dy

/{IES(L

(other distance functions are possible, see Deville and Sarndal, 1992).
Minimisation leads to the calibrated weights

wg = di(1 + 2 A) = dpvg,

where A is the result of minimisation of the distance function over the sample
respecting the constraints induced by the calibration equation,

1To simplify notation, a typographical distinction is not made between a single x vari-
able and multiple x variables, which would formally be denoted as a matrix (if for the
whole population) or as a column vector (if a specific unit k).
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A= (ty — tor) () diapl) ™
k‘ESa

provided the inverse exists.
From this, the calibration estimator of the population total ¢, is

byw == byr + (e = ) (D diarrl) ™ Y diwiys,

k€Esq k€Esq

that is, the expansion estimator corrected by the auxiliary information. This
can also be motivated by a regression approach (Deville and Sarndal, 1992).

With nonresponse, the study variable y values are collected from the
response set r, r C S,, of size n,, but not from its complement, s, \ 7.
Weight adjustment, in the case of nonresponse, proceeds by setting up either
implicit or explicit models. The response mechanism is postulated to follow
a distribution, ©(r|s,). Simpler assumptions about the distribution include
that the unit & will respond with probability Pr(k € r|k € s,) = 0 > 0, and
that the events of the unit k € s, responding and the unit [ € s, responding
are mutually independent, Pr(k,l € r|k,l € s,) = 0x0,. For example, the
response homogeneity group model (Sérndal et al., 1992, chapter 15) relies
on these, as well as some further assumptions.

However, calibration does not rely on explicit models of nonresponse.
With nonresponse, the approach is essentially the same as without it, the
main difference in that the y values for the estimation come from the response
set 7, r C S,, of size n,. In this case the known x information, with which
calibration equations can be formulated, may be one of three kinds: that
which relates to the sample (referred to as InfoS) and that which relates to
the population (InfoU), as well as a join of both of them (InfoUS). In what
follows, for brevity reasons the presentation is restricted to the InfoU case.
Given the wide use of administrative data available to the researchers and
statisticians, the use of InfoU approach is very common in practice. The other
cases (InfoS and InfoUS) are given an account of in Sdrndal and Lundstrém
(2005, chapter 8).

The calibration equation here is, similar to the full response case,

E WET = Ty,

ker
where ¢, again can either be calculated on the basis of data available for the
whole population, t, = >, @, or is known from an external source.
With the squared Euclidean distance, A is now found to be



A= (te — dexk)(z dpryay,) ",

ker ker

provided the inverse exists (generalised inverse can be tried if needed, Sédrndal
and Lundstrom, 2005, page 64).
Minimisation leads to the calibrated weights

From this, the calibration point estimator of the population total ¢, with
nonresponse is

tAy,n = Zwkyk- (1)

Note that the calibration weight wy, is not dependent of the study variable
Y, and thus is the same for all the study variables of a survey. It is assumed
that the auxiliary vector satisfies the unity condition u’z, = 1 for all k € U
where p is a vector of constants.

As we have seen, the calibration estimator deals with nonresponse bias by
adjusting weights through the use of auxiliary information x;. Thus, while
no explicit response model is entertained, the choice of suitable x vector is
still important. In order to reduce nonresponse bias, one should include into
the auxiliary vector those variables that explain the reciprocal of an assumed
‘probability of responding’, #, associated with the response mechanism, and
the study variable y (Sarndal and Lundstréom, 2005). Sérndal and Lund-
strom (2010) introduce indicators that enable comparison of different sets
of auxiliary vectors with the aim to choose the potentially best vector with
regard to nonresponse bias.

The calibration estimator given above is a regression estimator. When
other distance measures are used, then Deville and Sdrndal (1992) have shown
that under mild conditions the calibration estimator can be approximated
by a regression estimator. The regression estimator, and thus also the cal-
ibration estimator when applied on the full sample s,, is a nearly unbiased
estimator given the auxiliary information (Sdrndal and Lundstrom, 2005,
section 4.3). When applied to the response set, the size of the bias cannot
be evaluated. However, in the presence of good auxiliary information nearly
unbiased estimates can be obtained (Sérndal and Lundstrom, 2005). As the
calibration estimator is a nonlinear estimator with respect to the response
indicator I, = {1, if & € r;0 otherwise} in \,, only approximate variance
can be derived.



2.2 Measurement error

An advantage of nonresponse error as the object of study in survey methodol-
ogy, over measurement error, is the certainty about whether nonresponse has
occurred or not. For measurement error, this certainty does not exist. This
error type is therefore more difficult to conceptualise, to investigate, and to
correct for. This section gives a brief overview of the causes of measurement
error and of the approaches to modelling it.

2.2.1 Causes of measurement error

In direct data collections performed by producers of official statistics, infor-
mation is generally collected from a respondent, who represents the sampled
unit (herself, the household, the business, etc). Errors in measurement can
occur due to the data collection instrument (wording of the questions and
design of the questionnaire), the data collection mode, the interviewer, the
respondent, or due to errors in automated or manual data processing after
data collection (Groves, 1989; O’Muircheartaigh, 1997, and the volume that
it is contained in, Lyberg et. al, 1997; Edwards et al., 2017).

In providing the data, the respondent is generally thought to go through
four cognitive steps: question comprehension, data retrieval, judgement or
evaluation of the retrieved data with respect to the requested information,
and communication of the data (Tourangeau, 1984). These processes are
prone to be under influence of the design choices made in designing the data
collection instrument (Tourangeau et al., 2000). Further, some of the four
steps may be skipped, replaced by less burdensome choices (Krosnick et al.,
1996), leading to provision of less accurate data.

Impacts of modes of data collection were studied extensively (e.g. the
contributions in Presser et al., 2004). Particularly well studied was influence
of interviewer on responses collected, which demonstrated their substantial
impact on the data submitted to the data collection instrument (e.g. Olson
et al., 2020 and the references contained therein).

Predominantly in business surveys, data retrieval can also include consul-
tation of computerised systems that store relevant information, which pre-
sumes competence of the data provider to work with such a system. In these
surveys, the response process is also complicated by occasionally involving
several respondents, by being influenced by already established practices of
responding to the survey, as well as by there existing levels of authority in
decisions on participation and on release of information (Willimack et al.,
2002; Lorenc, 2007; Bavdaz, 2010). All these aspects can exert influence on,
and introduce error into, the data collected by a survey.
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2.2.2 Modelling the measurement error

Initial, and still predominant, contribution of methodological studies that
demonstrated impacts on measurement of the factors mentioned above con-
sisted of showing that there is a statistically significant difference in the
variable of interest collected by (say) data collection mode A (e.g. paper
questionnaire) versus mode B (e.g. web questionnaire), or (say) interviewer
A versus interviewer B. The question of which of the alternatives gives a
value that is the true one adds another level of complexity.

This question of philosophical origin has been scientifically studied within
psychology, in particular psychometrics, and from there it has entered survey
methodology. The key concepts are observed value, true score and true value.
To illustrate this, consider the expression

Yi = [i + €, (2)

with i denoting a specific object of measurement and y its attribute (so, for
instance, the turnover, y, of the business i.) Other characteristics of the mea-
suring process are considered constant, like the measuring instrument, the
external conditions of the measurement, and even time of the measurement).

The expression (2) can be interpreted as saying that an observed measure
of the unit ¢ consists of two components: a random error term and a true
score defined as p; = E(y;). Consequently, E(e;) = 0 (Biemer, 2011). The
process described by (2) can be seen as a hypothetical repeated random
drawing from the distribution of ¢; under the same conditions resulting in
different observed values y; reflecting the same true score ;.

However, in addition to the random error component, there can be a
systematic error component, which influences the true score itself and makes
it distinct from the true value proper. Loosely following Scholtus (2018,
chapter 1), we can express the true score as

Wi = a; + biT;. (3)

The a; is here seen as an intercept bias, that is, a linear shift for respondent 7
of the response on the scale of measurement; and b; as a bias proportional to
the true value for respondent i. And 7; is the true value itself. When a; = 0
and b; = 1, the respondent 7’s true value and their true score on the concept
in question are equal.

Joining (2) and (3), an observed value can be expressed as comprised of
the mentioned components,

yi:ai—kbn—l—ei. (4)
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Thus, the quantity 7; is the one sought for for the unit ¢, its true value on
the concept of interest. But, as that quantity, as well as p;, are per definition
not observable, they are referred to as latent variables or, in psychomet-
rics, latent factors, analysed with methods such as latent class analysis or
structural equation modelling (Biemer, 2011; Alwin, 2007).

More than one observation is needed to make models such as that in (4)—
or indeed most of the models resulting from the just mentioned methods—
identifiable. In the given example of (4), as in Scholtus (2018, expression
(1.3)), one can assume that the constants @ and b are the same in the set
of studied observations, thereby reducing the data need for estimating the
model, but still more than one observation will be needed to estimate such
a model. On the other hand, the model in (4) can be expanded with further
parameters representing the contribution of the interviewer or of the data
collection mode, thereby further increasing the amount of data to estimate
the parameters.

Measurement error models are widely used to evaluate quality of pro-
duced statistics (Biemer, 2009) and to provide research insights into the
measurement process in surveys (Saris and Gallhofer, 2014). However, as
acknowledged by for instance Saris and Revilla (2016) and Scholtus (2018,
chapter 1), their use for the purpose of reducing measurement errors in pro-
duction of official statistics and other similar, routine statistical output are
prevented by:

— the relative complexity of setting up these models,
— assuring the needed assumptions are fulfilled,

— the need for additional measurements, beyond those collected for the
original purpose of producing statistics (commonly, repeated measures
or reinterviews are needed),

— conformance of the results to the intended use (most of the methods
not suitable for one-variable applications).

As Biemer (2009, page 281) notes, primary uses of measurement error
analyses are: to evaluate or improve data collection methodology choices
(e.g. the mode of data collection), to evaluate or improve the questionnaire,
and to help understand limitations of the data. A direct use of the analyses
for adjusting the statistical output is not among those uses.

Even with a somewhat less demanding set of analysis methods, that rely
on existence of a gold standard (Biemer, 2011), adjusting the statistical out-
put is still not sufficiently simple to enable its integration into a statistics
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production process. Gold standard is a value obtained using a measurement
process assumed to be error-free. For instance, a reinterview by an indepen-
dent, experienced interviewer, the outcome of the reconciliation interview, or
an administrative source assumed to be fully correct (ibid). However, it is
worth noting that even such a relatively simple, considering the alternatives,
approach does need that additional measurement, the gold standard. To do
this collecting represents a further effort, a cost, and an addition to the total
processing time. A possible exception to this would be an error free adminis-
trative data source, but on the other hand if such data existed then they could
have been used for the original purpose of statistics production, without the
need of survey data collection (that leads to data with measurement errors)
by a survey measurement instrument. Such a data source can be useful for
a retroactive evaluation of an already collected data set, but its existence is
unrealistic as a source of gold standard for adjusting the measurement error
in ongoing production of everyday official and similar statistics.

2.3 Editing

As indicated at the outset of this article, editing is a statistics processing step
that addresses the measurement error in a wider sense. Thus it concerns any
error that has been introduced in the data, not only in the narrower sense
discussed in the preceding subsection but also errors that may occur in the
course of, for instance, data recording, data coding, or data processing.

Because measurement error is not as easily recognisable as nonresponse is,
efforts have been invested in developing indicators of potential measurement
error, usable for producers of statistics. In general these are referred to as
edit rules. Edit rules are expressed as conditions on (or limits for) the values
of the collected data points of the variable to be edited that, when exceeded,
signal a possible error in a data point or an inconsistency among some of the
collected data points (see more in Luzi et al., 2007; de Waal et al., 2011; and
Scholtus, 2018, for this and other topics of this subsection).

It is reasonable to assume that in any kind of data collection from which
statistics are produced, the producer’s goal is to reduce and possibly elim-
inate measurement errors. In particular this applies to producers of official
statistics, as their results are publicly available and relied on when making
various policy decisions on high government level.

2.3.1 Selective editing

To reduce costs and maintain quality, editing approaches have been intro-
duced to only partially edit the inconsistencies. One is to carry out the
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editing process starting from the most significant inconsistencies, and then
continue in a descending order of inconsistency significance until a preset
level of data quality has been reached.

To indicate influential inconsistencies, a score function is used (Latouche
and Berthelot, 1992; Lawrence and McDavitt, 1994), which expresses signif-
icance of the data point (significance of the observation) with respect to the
estimate to be produced. It is generally composed of an influence component
- if the observation is indeed in error, how big influence on the produced
estimate it may have; and a probability component - how likely it is that the
observation is indeed in error. Again, the reader is referred to de Waal et al.
(2011), and Scholtus (2018) for a more detailed exposition.

Gallagher et al. (2015) designed a sampling procedure and an estimator
to review the selective editing thresholds in a particular survey. Data of a
subsample of businesses that passed the selective editing in the survey (i.e.
whose data were not edited) were subsequently traditionally edited, which
enabled calculation of bias, which in turn was used to evaluate and possibly
change the thresholds used in the survey’s selective editing process.

Therefore, while successful at reaching its targeted goal to reduce edit-
ing costs, selective editing—if used with traditional estimators—results in
estimates with unknown bias due to possible remaining errors; additionally,
the variance cannot be estimated correctly due to it lacking the uncertainty
introduced by the editing.

In that light, probabilistic editing has been introduced to enable correct
inference with partially edited survey data.

2.3.2 Probabilistic editing

Probabilistic editing, introduced by Ilves and Laitila (2009) and developed
further in Ilves (2011), combines the idea of selective editing with a probabil-
ity sample of observations (including those not indicated for selective editing)
to be checked and if necessary edited. For these units, if erroneous values
have originally been recorded, the true values will be obtained in the editing
process. Based on the sampling design and obtained true values, the effect
of not editing all inconsistencies and possible erroneous values in the sample
can be estimated and this bias estimate can be used to compute unbiased
survey estimates and their variances.

So, like selective editing, this approach too does not verify all inconsis-
tencies, but it gives tools for making inference in the probability sampling
framework. An important aim of probabilistic editing approach is to mini-
mize the work going into checking up correct units and this can be achieved
by applying an efficient sampling design for selecting the units to be verified.
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For efficient sampling, inclusion probabilities should be proportional to
some measure reflecting the size of error, importance of the unit, importance
of the variable etc. One possibility is to use a Poisson sampling as in Ilves
(2011) or PoMix sampling as in Ilves and Laitila (2009) with measure being
a global score, used in selective editing (Latouche and Berthelot, 1992) or
some other auxiliary information related to the size of measurement error.

Laitila et al. (2017) conducted an experiment embedded in an ongoing
monthly survey where routinely data were edited using selective editing. The
authors evaluated the selective editing approach in two ways. Firstly, they
subsampled records below the cutoff threshold for selective editing, edited
those records and applied a bias corrected estimator from probabilistic edit-
ing approach (Ilves and Laitila, 2009). For the second approach, model-
predicted values were calculated for subsampled records and for estimation
design weights were applied. Application of selective editing was found suc-
cessful by the authors. Regarding the remaining bias, estimates were larger,
with larger standard errors, in the modelling approach.

Scholtus (2018) outlined an alternative to the standard editing process
for economic statistics at Statistics Netherlands. The standard process was
presented as a suite of deductive, selective, automatic and macro editing. The
alternative would keep the deductive, automatic and macro editing steps but
add a probability sample of records as outlined by Ilves and Laitila (2009)
to evaluate the quality of the intended output. That process has not been
tested, citing possible issues with application of the alternative process to
surveys with a large number of variables as one reason.

2.4 Addressing both nonresponse and measurement
error

As mentioned in the Introduction, the work presented in this study was set in
a Total Survey Error context. Consequently, it aimed to integrate more than
one source of error into a study or application (Groves and Lyberg, 2010). A
review of literature on studies performed with the similar intent, to jointly
treat measurement error and nonresponse, indicated a need to distinguish
between retrospective studies and those that are concurrent with production
of statistical output.

To clarify the difference, retrospective studies did not use their results to
adjust estimates from the survey round on which they were conducted; rather,
they aimed either to inform scientific discourse or to improve the survey’s
future rounds by providing an evaluation of these and possibly other quality
components. Concurrent studies were designed so that their estimation of

15



nonresponse and measurement errors made possible adjustment of the current
survey round’s estimates. The data and time requirements for estimating
measurement error models (Section 2.2.2) may have a direct bearing on this
distinction and the fact that studies of the latter type are fewer than those
of the former type.

2.4.1 Retrospective studies

In an early study aiming to simultaneously treat nonresponse and measure-
ment error, Jackman (1999) built a model that included both of these error
sources, and demonstrated its use by estimating voter turnout. However,
some of the parameters that the model required were supplied as aggregate
estimates taken from other surveys, which was the auxiliary information in
this case.

In another early study, Biemer (2001) decomposed the differences associ-
ated with two data collection modes into measurement bias and nonresponse
bias components in order to evaluate and compare the quality of survey data
between the two modes. To assess the measurement bias, latent class analysis
with interview-reinterview data was used. The author stressed importance
of including the measurement error estimation and correction into statistics
production in order to provide output of better quality.

Using administrative records to evaluate measurement error, Olson (2006)
found nonresponse bias and measurement error bias to depend on type of
nonresponse (noncontact or refusal) and on the variable studied. In this
study, total bias decreased with increasing efforts to gain cooperation of
sampled individuals.

Estimating nonresponse error and measurement error using administra-
tive data on sampled units, Kreuter et al. (2010) found that increasing re-
cruitment efforts led to significant reduction in nonresponse bias at the cost
of only a minor increase in measurement error. However, they also found
that the increased efforts did lead to an increase in total mean squared error.

Sakshaug et al. (2010), having administrative records as a gold standard,
investigated the relative contributions of nonresponse and measurement error
on total error under multiple modes of data collection and with two levels
of sensitivity of the survey questions. They found that measurement error
dominated nonresponse error in the case studied, but that this was mediated
by sensitivity of questions. Similarly, Sakshaug et al. (2023), using linked
administrative data to separate the effects of nonresponse error and mea-
surement error in a panel survey that used a mixed mode data collection,
found that mixing modes mostly reduced nonresponse bias without leading
to a significant measurement bias, and also improved the total mean squared
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error.

Buelens et al. (2012) conducted a complex study aiming to identify and
estimate relative mode effect components arising from selection bias and mea-
surement bias. Their design involved a second wave questionnaire, used to
disentangling the relative mode effect into selection and measurement effects,
but they did not consider it a reinterview, but as means to construct appro-
priate nonresponse adjustment weights for calibration estimator. Conducting
their research on the Dutch Crime Victimization Survey and Labour Force
Survey, they found that both the decomposition and the estimation strategy
had relatively little impact on estimates.

In a setup similar to that of Buelens (2012), Klausch et al. (2015) evalu-
ated measurement bias and selection bias in survey using sequential mixed-
mode design. Again, special reinterview survey provided additional auxiliary
data. Their evaluations had either a face-to-face reference survey as the
benchmark, or a hybrid benchmark combining the measurements of a web
survey with the selection bias of a face-to-face survey. Their conclusions on
an optimal design depended on the benchmark used.

2.4.2 Concurrent studies

Calinescu and Schouten (2016) modelled, with separate models, both re-
sponse propensity and response quality propensity (i.e tendency towards
providing data without measurement error) in an adaptive survey design
setting, to direct the data collection towards reducing both nonresponse bias
and measurement bias. The report doesn’t disclose whether the estimation
procedure in the survey in which the research has been embedded has changed
due to the interventions at the data collection stage or not.

Beyler and Beyler (2017), constructing a model for nonresponse and an-
other for measurement error, demonstrated in a simulation study the im-
portance of adjusting for both of this error types simultaneously in order to
obtain unbiased point estimates. Estimating the measurement error model
required two measures of the study variable per respondent in order to be
identifiable. Any conducted work on estimation of variance of the point es-
timates was not reported, and the study seemed not to have been conducted
within a finite population inference framework.

To estimate a measurement error model, either repeated measures or a
gold standard need to exist. In a standard statistics production process these
do not exist and require extra efforts and time to produce. This probably
explains an apparent absence of studies where nonresponse and measurement
error are addressed concurrently within an ongoing statistics production pro-
cess.
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2.5 Synthesis

Current state of art in the reviewed areas allows these conclusions:

— treatment of nonresponse error benefits from beginning early, at the
data collection stage, prioritising those cases that—would their data not
be collected—are likely to have the largest impact on nonresponse bias;
for this, various approaches to case prioritisation (balance, distance, or
representativity indicators under adaptive or responsive designs) are
available;

— for unbiased estimation in the case of nonresponse, availability of vari-
ables that are good predictors of the nonresponse and of variables that
are good predictors of the study variable (not necessarily the same as
the preceding ones) are essential in reducing the bias; with the use
of such variables one can proceed with methods that either explicitly
model these relations (model-based and model-assisted methods of in-
ference) or those that demonstrate advantages of using such variables
but without formally stating any model (e.g. the calibration approach
as reflected in Sérndal and Lundstrom (2005));

— irrespective of which approach to inference is used, evidence has emerged
that the procedure that applies a so-called two-step approach—inference
first from the response set to the sample and then from the sample to
the target population—is to be preferred over one-step approaches;

— while it is likely that an approach to correcting nonresponse bias along
the lines suggested in the preceding item will indeed improve the point
estimate, there is no guarantee that such an outcome will indeed hap-
pen; the methodologist for any particular survey needs to be alert to
possible shifts in explanatory power of the used auxiliary variables and
verify these occasionally, because otherwise it may happen that the
adjustment just increases the variance while not improving the point
estimate;

— selective editing is a method that reduces editing efforts and costs as
well as reduces measurement error in the data and thereby improves
the point estimate; however, by itself—as described in the editing
literature—this method does not take into account (a) possible remain-
ing bias after the selective editing, and (b) the extra variance introduced
by the editing process, resulting in possibly biased point estimates with
underestimated variances;
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— impact of nonresponse and measurement error varies between the stud-
ies and the data collection modes they use; therefore, including them
both into a study’s design and estimation provides increased assurance
that their effects, if they exist, will be included into estimation of the
statistics produced, and thereby improve on the statistics produced
without accounting for these two nonsampling errors.

Next, an estimator is introduced that, while keeping to the probabilistic
approach to editing, in addition uses calibration for nonresponse adjustment
in order to deal with two types of nonsampling error simultaneously.

3 Point estimation for partially edited data
under nonresponse

This section introduces an unbiased estimator of the population total in the
presence of nonresponse and measurement error.

3.1 Quasi-randomization setup

Oh and Scheuren (1983) framed nonresponse in sample surveys as the out-
come of a second phase of sampling. However, this was not a pure design-
based framework due to the implicit modelling involved concerning the non-
response part, and therefore the authors called this a quasi-randomization
approach for dealing with nonresponse. In this paper, the approach also con-
tains a third phase of sampling to accommodate the editing of measurement
errors. This leads to a three-phase selection design where consecutive phases
are realized given the outcome of the previous stage. The setup is described
by the following three phases:

1. Randomness caused by random sampling of units from the population
(sampling error);

2. Randomness caused by an unknown selection mechanism of the sam-
pled units into the response set (nonresponse error);

3. Randomness caused by subsampling units among respondents in order
to edit their responses and evaluate the measurement bias (measure-
ment error).

Note that the randomness mechanisms in the first and third phases are
known due to the chosen probability sampling designs, while the randomness
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Sa

Figure 1: Sampling scheme

mechanism in the second phase is unknown. In order to perform statistical
inference, assumptions must be placed on how the response set is obtained
given the first phase sample.

Let us consider population U = {1, ..., N} of size N from which a sample
s, of size n, is drawn according to some probability sampling design, p(s,).
The first-order and second-order inclusion probabilities are known and de-
noted by 7 and 7y, with k,[ € U, respectively. Drawing a random sample
corresponds to the first phase of the three phases.

The second phase of the design makes assumptions about how the re-
sponse set was obtained. Due to nonresponse, only a subset of the sample is
observed, the response set, r, where r C s,, and the size of the subset is n,.
The unknown response distribution that creates the response set r is denoted
by O(r|sq).

In the third phase of the design, information is collected about the size
of the measurement error and its effect on the variability of the estimates.
For this purpose, a subset is drawn from the response set, denoted by so,
of size ny according to some sampling design p(sq|r). The first-order and
second-order inclusion probabilities of the design p(s,|r) are denoted by ),
and 7y, where k,1 € r, respectively. The three phases of sampling are
illustrated in Figure 1.

Let us denote by dj, = 1/7; the design weight assigned to the unit k in
drawing the first phase sample, by v the weight adjustment due to observing
study variable values in the set » and not the whole sample s,, and by wgy
the weight assigned for subsampling of units of the response set r into the
third phase sample s;. Weights dg, v, and woy are, for phases one and
three, functions of their corresponding sampling designs, and for phase two
functions of the unknown nonresponse-generating mechanism. In all the
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cases, the weights may also be functions of some auxiliary information (if
available). The product of the three weights is denoted by wy,

Wy, = dpUEWa. (5)

3.2 An estimator corrected for nonresponse and mea-
surement biases

The goal is to estimate the population total of the variable of interest z,
t, = chvzl zr. Due to nonresponse, responses are obtained not from the
whole intended sample s, but from a reduced set r, r C s,. Further, due
to measurement error, the variable observed is y which, for some of the
population units, is different from the variable z. After taking a sample, so,
from the response set r, true values z; are obtained for the units in s,. Both
zr and y;, are treated as fixed, nonrandom variables.

Let fy = Zk@ drvryr be an estimator of the population total of g, cal-
culated using the observed y values in r. The bias of the estimator due
to measurement error — that is, due to observing y instead of z — can be
estimated by using the pairs of observations y, and zp, k € so. Different
estimators of that bias can be considered. In the case of the HT-estimator,
the bias estimator is given by

P Z dkvk(yk - Zk). (6)

qs2 T
kEso k‘T

where 7y, is the first-order inclusion probability of the sampling design
p(s2|r).

And the estimator of the population total of the variable of interest z,
corrected for the measurement error bias, is:

R dyv — 2
=Y dg— Y divr(ye = 2x) (7)

n
ker k€Esa klr

The estimator (7) is unbiased with respect to measurement errors as E(f,|r) =
ZT dkvkzk.

Replacing the inclusion probabilities 1/7y, by way, the estimator (7) can
be generalized so that it applies to any linear approximately unbiased esti-
mator used for estimation of the population total and the measurement error
bias:

t, = fw — ﬁm = Z vy — Z AR VW2 G- (8)

ker keEsa
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Here, tAyr is an estimator of the population total disregarding the effect of
measurement errors, qu2 is the estimate of the size of the measurement errors,
the subindices r and s, indicate the set used for computing the estimates,
and g, = ypr — 2k, Kk € s9, denotes the size of the measurement error for unit
k and variable z.

It may also be of interest to consider the ratio estimator for estimating

the measurement bias. Then, the weight is wq, = i—zﬁ in (8) yielding a
ratio estimator . q
rati Ukdk
tratzo — A_CU k 7 9
e t Z Tk|r ©)

T keso

where t, = ZkGSQ wgx. Using ratio type estimator will help to reduce the
variance of the measurement bias estimator if there exists auxiliary informa-
tion x roughly proportional to measurement error ¢,. The ratio estimator is
nearly unbiased given the sample.

The formula given by (8) is simple but computationally not very practical
as one needs to have data in the form of two separate sets, response set r and
subsample sy. Alternatively, the estimator (8) can be written as an estimate
over the response set only:

l?z = Z dkvkyl:7 yz =Yk — U)Qk[k|r<yk o Zk)’ (10)
ker

= > (whye + (deve —wi)z),  wi = dyop(1 —walyy,), (1)
ker

. 1 k € So
B 0 k& ¢ S92
indicates whether unit k is selected into subsample s5 or not.

The expression given by (10) is of a familiar linear form and shows that
the total estimate can be computed as any other weighted total once the
transformed variable y; is formed. In a typical survey, numerous variables
are collected and not all of them will be checked for measurement errors.
Thus, it is important that the same estimation procedure can be applied to
all the variables and the same set of weights can be used when computing
different totals.

The expression (11) gives the computational formula when, instead of the
transformed variable, original and edited values are used. Note that in this
latter case two different sets of weights need to be computed.

Ik\r
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4 Variance expressions for the point estimate

The previous section introduced an approximately unbiased estimator that
can be used in a practical survey situation where both nonresponse and mea-
surement errors occur and where measurement errors are corrected among a
subsample of responding units. In this section, the accuracy of the estimator
is studied. For this purpose, expressions of the variance and the variance
estimators are derived for the point estimator (8).

4.1 Variance formulae
The variance of ., V(t.), can be expressed as sum of three terms:
V(fz) = v(fyr) + V(fzm) - Qcav(fyqu@) (12)

the terms being variance of the estimator of the total of the study variable,
tyr = rer dkVrYr, variance of the estimator of the size of measurement error,

~

~+

qs2 = Zkesz dpvrwarqs, and the covariance of the two estimators.

Each term of the (12) can be developed further by taking into account
described quasi-randomization setup and applying the laws of iterated ex-
pectations. The first term can be expressed as:

V@y?“) = V1E2<Ey7“’5a) + El%(fyrysa)
= Vl(tysa + B(tyr|5a)) + Elv?(tyr|5a>

where fysa = Zsa diyr. Here, E and V refer to the expectation and variance
of the estimators, respectively, and B refers to the bias of the estimator.
Sub-indexes 1 and 2 indicate the randomness mechanism in steps 1 and 2,
respectively (see Section 3.1).

Using the assumption of unbiasedness of the estimator fyr given the sam-
ple, B(t,,|s.) = 0, an assumption made by for example Sirndal and Lund-
strom (2005) for the calibration estimator, then

V(iy) = Villy,,) + EiVa(ly]sa)- (13)

Similarly approaching the second term in (12), one gets

~

V(tgs,) = ViBEas(tys,) + E1Vas(tys,) =
= ‘/1E2E3<tq52‘5aar) +E1%E3(tq52‘3a>r) +
+ ElEng(quQ|sa,T)

Here, sub-index 3 refers to the randomness mechanism in 3 as explained in
Section 3.1).
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Again, assuming that such estimator #,,, is used that is unbiased given
the previous phases of sampling, B(t,|r,s,) =~ 0 and B(t,|s.) ~ 0, then
V (t4s,) can be further derived,

V(tAq52> = VlEQGWBd) + E1V2(£qr|8a) + ElE?‘/:”)(fq82|5aa T)
= Viltgs,) + E1Va(tyr|sa) + E1EaVa(tys,[Sa,7) (14)

Using the same technique and assumptions made above, the covariance
term in (12) takes the form:

Cov(tyr,tys,) = Covi(EaEs(ty|sa,r), E2Es(tesy|54,7))
E,Covy(E5(t yr|5aa r), E3(5q82|3a77’))

ElEQCOU (( y7’|8a7 ) (fq82|8avr))

= Covi(ty. ,t.) + E1Covs(ty|Sa, tyr]sa) + 0 (15)

+
+

Here, Cov refers to the covariance of the estimator.
Combining (13), (14), and (15) will give a variance formula:

V(t;) = Vl(’gysa) + E1V2(£yr|5a>
+ Vi(lys,) + E1Va(tor]sa) + E1EaVa(lys,|Sa: )
— 20001ty Lysy) — 2E10005(tyr |80, tgr|5a) (16)

Variance (16) is general and can be applied with any estimators #,, and
fq52 satisfying the unbiasedness assumptions given above. The four first terms
and the two last terms on the right hand side represent the variances of the
differences between the two estimators — between the total of the observed
study variable y and the total of the measurement error ¢ — calculated on
each of the first two phases, Vi (t,s, — t4s,) and E1Va((t, — 14 )|54), as can be
seen by rewriting (16) as

V(EZ) = Vl(iysa) + Vl(tAqsa) —2Cov; (fysaa Ltqsa)
+ EVa(ty|se) + E1Va(ty|sa) — 2E1Covs(ty,|Sa, ter|Sa)
+ ElEQ%(£q52’5a7 7“). (17)

The same estimator, that is, the same weights, are used for both estimators
in the same phase. The two sets of terms in (17), excluding the closing term
E1EyVs(tys,|84,7), are not dependent on the third phase sampling p(sy |
SqyT).

Let us consider the calibration estimator (1) in place of #,,, a Poisson
design for the probabilistic editing, and the HT-estimator for estimating the
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measurement error bias, f,,,. Then the terms in (16) can be approximated
as:

Q

Vi(ly,,) Z Z ApdpUpd Uy (18)

kel
E\Va(tylss) =~ E (ZZAkHsadkkakdllel) (19)
FlEsa
Villgs) =~ D) Audrgrdiq (20)
kel
E\V(tylss) ~ Ei (ZZAk”sa(dkkak)(dlvl(ﬂ)) (21)
kler
Ei1EyVs(tgs,|Sa,r) ~ E1Es (ZZAMV(kak)(wl(H”Sa) (22)
kler
Covi(ty,.  tys.)) =~ ZZAkldedeQI (23)
kel
ElCovg(fyr,qu|sa) ~ E (ZZAkusa(dkkak)(dlUlC]l)) (24)
kEsa

where Ay = m — 7, Akl|sa = Tkl|sq — Tk|sa T l|sq> and Akl|r = Tkl|r — Tk|rTl|r,
are the covariances of the first, second and third phase sampling indicators,
respectively, and Uy, = yp — 2} (O cp Tr2h ) (O ey Thyr) are regression
residuals.

Above, (18) is the variance of a GREG estimator and (20) is the vari-
ance of the HT-estimator, and the (23) the covariance between these two
estimators. Other terms do not have explicit form as they may depend on
the actually realized samples s, and r. In many situations it is reasonable to
assume that the probability of unit responding or the probability that unit
has measurement errors is independent of the other units response probabil-
ity and probability to have measurement errors in the records. This means
that Ayys, = 0 and Ay, = 0 if k& # [ and the variance terms not having
explicit form above can be written as single sums.
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R —1
El‘/2<tyr|5a> ~ El <Z Ukka (dkkak)2> (25)

k€sq

E1V2(Eqr‘sa) ~ El <Z UkUk_Q 1)(dkkak)2> (26)

k€sq
R wop — 1
Ey By Vi(fgsy|50,7) ~ E1By Z( )(wkqmsa] (27)
ker w2k
PO v — 1
ElC’ovg(tyr,th\sa) ~ E1 (Z kv2 (dkkaqu)2> (28)
k
k€sq

4.2 Variance estimators

Estimation of V/(£,) can be based on derivation of expressions for the terms
in equation (16) similar to those derived in equations (18)-(24). In that case,
the variance estimator proposed by Sdrndal and Lundstrém (2005, chapter
11) for the calibration estimator f,, is obtained using expansion estimators
of (18) and (19) based on the response set r.

Similarly, the terms (20)-(24) can be estimated using expansion estima-
tors based on the third phase sample s,. For this, define

—1
u, = yp— T (Z dwwﬂ%) (Z dk%%llk) (29)

ker ker

Under the three phase quasi-randomization sampling scheme (Section 3.1)
with simple random sampling in the first phase, some unspecified selection
process with independent inclusions in the second phase and Poisson sam-
pling in the third phase, the variance estimate,V (£.), has three terms:

~ A A ~

V(tAZ) = V(tyT) + V(£q82) - 2OA0U(£W7 tAqS2)7 (30)

Each term is expressed below.

V(l?yr) = Z Z(dkdl — dkl)vkukvlul

k(ler

— de(dk — 1)vk(vk — 1)uk2 + ka(vk - 1)(dkuk)2 (31)

ker ker
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Inserting Sl-design weights for the first phase into (31), we get
0 N*(1-f) 2 1 2
V(ty) = m ;(’Ukjuk)) - ﬁ(z V)
1 /1 , 1 ,
AV 1 ka(vk — Duj + 7 ka(vk — Duy (32)

where f = n/N is the first phase sampling fraction, vy is the calibration
weight, wa, = 1/my, is the weight in the Poisson sampling and uy is given
by (29).

The second term of (30) can be expressed as

Z Z —————dpqrdiq

flEss Wklﬂk”saﬂ-k”r

+ Z Z Bl ———dpvrqpdivrqr + Z Z llekvkwﬁdelUlw?lCH (33)

T
k€50 Tkl|sq Tkl|r k€50 Tkl|r

Applying our specific sampling designs on (33), again with SI design in
the first phase, we get

. 1—f
V(tqsz) = Z Ukw%Qk2

2
.
—Zl;f (Z Ukw2ka)2 - Z(Uszk%)2
fPn=1) |4 =
1
+F Z viwar (W, — 1)qe® + Z v (v — 1)w2qu]
EPD) 52
(34)
And the general form of the estimator of the covariance term is
CO’U s tas drurdq
y q2 kzglezs”klﬁkllsﬂh R
kl Sa
+> ) g vpugdyong (35)

e iy Tl
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which yields the following expression in our specific case

Aa s 1
COU(tyr; tqu) = ﬁ Z Uk(Uk — f)w2kuqu
1-f
_f2(n —1) Z Z(Ukuk)(vlwméﬂ) (36)
kel;",;éelsg

The estimator (31) is obtained by applying variance estimator given in
Sérndal and Lundstrém (2005, expressions (11.4), (11.5)) for a special case
where only population level auxiliary information is used and an instrument
vector zx = x. Derivation of the equations (34) and (36) is given in the
Appendix.

Now, if the ratio estimator is used instead of the HT-estimator for the
bias estimation then approximate variance can be computed using estimated
Taylor deviates. Estimated Taylor deviates in the case of the ratio estima-
tor have the following form: ¢, = t,'(yx — Rxy), where R = #;',. The
variance of the ratio estimator can be approximated by the variance of the
HT-estimator, V(R) ~ V (f,), where {, is the HT-estimator of the estimated
Taylor deviates. This is a large-sample property, derived in Fuller (20009,
pages 58-60).

Applying the notation and framework used in this paper to the general
formula, the deviates are: g = ;'(qx — Ray) where R = {;'%,,,. Approx-
imating the variance of the ratio estimator by V(t,R) ~ t,2V({,), where
ty = > s, Wigr and wy, is defined by (11), the total variance can be computed
as

V(t,) = V(ty) + t.2V(ty) — 2t,Cov(t,,, 1,), (37)

where the terms are given by (32), (34), and (36) by replacing g, with .
For certain populations ratio estimator can be highly efficient (Cassel et al.,

1977, chapter 7)

5 Simulation study

To investigate the performance of developed estimators, I conducted a Monte
Carlo study on synthetic data with a known population-generating mecha-
nism. It means that variables were generated from known gamma distribu-
tions and the parameters of the distribution were chosen so that the resulting
variables were correlated.

A population in this setup was characterised by five variables, conceived
to be as follows: a target variable (the variable of interest), z; an observed
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variable related to the target variable, y; and three auxiliary variables, x1,
To, and x3. The variable z can be seen as for instance actual turnover of
a business, and y as the turnover as reported by the business in a specific
statistical survey conducted by a national statistical institute; the z;,7 €
{1,2,3} were auxiliary variables, in different ways related to z, y, and to
each other, as follows. Obtained from a very large population (100 Million
units 2), some numerical properties of these variables, generated as a set of
correlated gamma distributions, are presented in Table 1 and Table 2.

Table 1: Univariate properties of the variables z, y, x1, xs, and x3, as well
as of z/x3. Note: Measurement error is not conceived of as a population
characteristics, and is therefore introduced at a later stage; therefore, z and
y are the same at the time of population generation.

z y T T xr3  z/x3
Min. 4.50 4.50 3.21 0.73 7.25  0.02
1st Qu. 168.44 168.44 41.69 117.58 150.75 0.76
Median 233.56  233.56  53.68 180.48  202.04 1.16
Mean 250.01 250.01  56.00 201.68  213.58 1.40
3rd Qu. 313.76 313.76  67.79  262.89 263.86 1.75
Max. 1351.38 1351.38 223.15 1469.23 1008.56 45.66

Table 2: Pearson’s correlation r» between the variables in the population.

z Yy Ty P T3 273
z 1.000 1.000 .300 .788  .000  .637
Yy 1.000 1.000 .300 .788 .000  .637

T 300 .300 1.000 .000 873 -.313
T 788 U788 .000 1.000  .000  .502
T3 .000 .000 .873 .000 1.000 -.577

z/xg 637 .637 -313 502 -.577 1.000

For the purpose of the simulation study, each generated population cre-
ated in the described way consisted of N = 10000 units.

2Population of 100 Million units was used only to illustrate the numerical properties of
the population. Later on in the study, smaller population is used.
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Subsets from the population, according to the three-phase sampling pro-
cess, were created as follows:

1.

First phase: sample s, of size n, = 1000 was taken from the population
using simple random sampling (SRS).

Second phase: among the units in s,, a subset of respondents 7 of the
random size n, was generated using a proportional to size selection
(as Poisson sampling but — for speed — without separately treating the
cases of m, > 1), with x; as the size variable and with 700 units as the
targeted size of the subset. This resulted in an actual ‘response rate’
of around 68%.

For simulation purposes, an indicator of measurement error was as-
signed to the responding units, again using a proportional to size se-
lection (again, as Poisson sampling but without separately treating the
cases of m, > 1), with z/x3 as the size variable, conceived roughly as
‘turnover per (a correlate of) employee’. Of those, to reduce the num-
ber of erroneous records, only every fourth record was randomly picked
and set to indicate measurement error. In this way, a measurement
error was indicated for around 20% of the response set r units.

For each of the units ¢ where a measurement error was indicated, the
error’s magnitude was determined using a linear function, e; = z; * u;,
where u; was assigned from values in the range (.30, .55) using a uniform
random number generator. From this, the observed target variable y;
was created, y; = 2; + ¢;.

. Third phase: In order to correct for the measurement error, a subset s,

of a random size n, from the response set was drawn using a Poisson
sampling design with z, as the size variable® and with an expected
sample size of 90. The value without measurement error z; was observed
for these units. For the purpose of this application, it was assumed that
all the units sampled into s, responded.

Summary of the distributions of sizes of the subsets at the three phases,
over 10000 draws of both the population and subsets, is presented in Table

3.

The generated simulation variable values, sampling indicators and weights
were recorded in a data table, enabling application of the developed point

3The variable 5 can here be seen as an illustration of a global score, identifying the
most important records to be edited. How such a global score would be derived is beyond
the scope of this paper, but some relevant references were given in Section 2.3.
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Table 3: Achieved sizes of the subgroups, over a set of 10000 independently
created populations and drawn samples.

Ng n, Ny
Min. 1000 629.0 60.0
1st Qu. 1000 671.0 84.0
Median 1000 680.0  90.0
Mean 1000 680.2 90.0
3rd Qu. 1000 689.0 96.0
Max. 1000 734.0 123.0

estimator (7) and the ratio estimator (9). Variance estimates were computed
as given in Section 4.2. For the case of the ratio estimator, the parameters
estimated on the level of the sample s, are those in equations (9) and (37),
based on the quantity gy.

In the simulation study the auxiliary information was used in two ways.
First, the auxiliary vector in the calibration estimator consisted of two vari-
ables known on population level, xp = (1,z1x),k € U. And the other
use of additional information was in the ratio estimator (9) where t, =
252 divpworxsr and t, = > Tak.

The simulation study was performed as a set of B repetitions (b =
1,...., B) of the procedure above, where the population was held constant
but the three-phase selection and the assignment of measurement errors was
independently repeated, and the estimators recorded (“inner”repetitions). A
set of B repetitions was nested within a set of C' repetitions (¢ = 1,....,C)
where a new population with the characteristics presented above was drawn
at the start of an outer repetition, independently from the previous drawings
(“outer” repetitions).

In each of the b repetitions, the calculated point estimates t,, fyr, and
qug were recorded, as well as the difference t, —t, and also the estimated
variance V(£,) and its components V (f,.), V(f4,), and Cov(f,,, tys,). The
empirical, true value of ¢, for the population (the same in each of the b “inner”
repetitions drawn from the same population in a ¢ “outer” repetition) was
also recorded, as well as a coverage indicator set to mark when the absolute
difference |f, — t,| was smaller than 1.96 x (V/(£.))"/2. Also calculated was
the relative bias (RB) for the different estimated values of an estimand, 6,
defined as RB = (0 —0) /6, expressed in the results table as a percentage (i.e.
%RB = RB(0) x 100).

After a set of B repetitions has been completed, the empirical means and
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Table 4: Simulation results for the two estimators used in the third phase,
the HT and ratio estimators, with B = 1000, C' = 1000: means over the C
repetitions.

HT Ratio

Parameter Estimated Empirical %RB | Estimate Actual %RB
t./103 2499.7 2499.8  -0.0 | 24983 24998 -0.1
tyr/103 2720.3 2720.3

tgsy/103 220.6 222.0

V(t,)/108 4410.2 4394.9 0.3 | 42269 4225.1 0.0
V (tyr)/106 2399.8 2426.0  -1.1 2399.8 24260  -1.1
V(tys,)/10° 3171.5 3173.4  -0.1 3050.8 30882  -1.2
—2C0v(tyy, tys,) /106 -1161.1  -1204.5  -3.6 | -1223.8 -1289.1  -5.1
To5%Coverage % 10 94.8 94.8

variances of the produced point estimates were calculated, and thus their
empirical biases and MSEs; also calculated were means of the estimated
variances, and the means of the relative bias and the coverage indicator.
These all were recorded as a row of the C' data table. Finally, after completing
the set of C' repetitions, means of the recorded empirical means and variances
over the C repetitions were calculated.

This simulation study was run in two variants, the first with the HT-
estimator in the third phase, and the second with the ratio estimator (9). In
both cases, the calibration estimator fyr was the same. Both were run with
the same random generator seed value, meaning that the created populations
and samples for them were identical. The results are presented combined in
Table 4

Results in Table 4 confirm that the proposed bias corrected estimator
is indeed unbiased, with relative bias measure being near zero. Without
correcting for the measurement error bias the point estimator would overes-
timate the total by 8% as all measurement errors were generated upwards
per the simulation setup, meaning all corrections were done downwards dur-
ing editing. One should though note that due to the simulation setup the
bias due to the nonreponse was likely to be small or near zero as the same
auxiliary information was used in the calibration estimator as was used in
the response generating mechanism.

To get some insight about the nonresponse bias, the same simulation
setup was carried out by using expansion estimator instead of calibration
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Table 5: Simulation results with expansion estimator in the second phase
instead of the calibration estimator, and ratio estimator in the third phase,
with B = 1000, C' = 1000: means over the C repetitions.

Parameter Estimated Empirical %RB
t./10° 2617.3 2499.8 4.7
tyr/103 2821.5

tyss /103 204.2

V(t.)/108 4110.6 42221  -2.6
V (tyr)/10° 2641.1 2661.7  -0.8
V(tys,)/10° 2611.7 27086  -3.6
—2C0v(tyr, tys,)/108 -1142.2 -11482  -0.5
195%C'overage X 102 52.8

estimator to deal with nonresponse at the estimation stage. The results in
Table 5 show, as expected, biased point estimate and loss in the coverage rate.
What is interesting though is that the nonresponse bias of about 5% leads to
corresponding coverage rate of 53%. In comparison, unbiased estimate had
coverage rate of 95%.

Variance estimates in Table 4 are compared to the empirical variances
of the estimators as population level estimates cannot be mathematically
explicitly expressed. In addition to the total variance, each term of the total
variance is also presented. Results show good fit between estimates and
empirical results, the largest difference being in the covariance estimate. Still,
the coverage rate is near the designated 95%, indicating that the variance
estimate quite precisely estimates the variation of the point estimate.

Both estimators, HT and ratio type estimator, yield nearly unbiased es-
timates. However, there is slight efficiency gain in variance when using ratio
type estimator instead of the HT-estimator.

As we see from the numerical results, it is important to use variance
estimates that take into account the variability in all three phases. If we
would use only readily available variance estimate of the calibration estima-
tor and ignore the variability stemming from the editing phase, we would
considerably underestimate the variance—almost by half—and overestimate
the coverage rate.
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6 Summary and discussion

In this paper, an estimation procedure was proposed when two kind of non-
sampling error are present in a sample survey: nonresponse error and mea-
surement error. Estimation relies on quasi-randomization setup consisting
of three phases of random selections, where calibration approach utilizing
auxiliary information is applied in the second phase to primarily treat nonre-
sponse error, and probabilistic editing carried out in the last phase addresses
measurement error. Unbiased estimator of the total, its variance estimator
and corresponding variance estimate were derived and applied on synthetic
data in a simulation study.

Proposed approach relies, firstly, on good understanding of the response
mechanism and on information available to adjust for nonresponse. Secondly,
one needs to carry out editing of all records in a subsample to verify responses
and correct them, if necessary. One can increase the efficiency of the editing
procedure by using global scores in the third phase of sampling, which more
likely highlights suspicious records.

The main attention was on the measurement error and its effect on esti-
mates. The method described in this paper gives a tool to estimate bias due
to measurement error and ultimately, correct the total estimate of interest.
Simulation results confirm the correctness of the theoretical derivations as
both the point estimator of the study variable and its variance have near
zero relative bias. Thus, the proposed estimator removes bias due to mea-
surement error and should be preferred, in general, since an uncorrected
estimator leaves bias of unknown size and may invalidate the decisions made
based on it.

As concerns the nonresponse error, it was assumed to be present but
was not explicitly estimated, however it was removed through applying the
calibration method. Some insight into the nonresponse bias was offered by
comparing expansion estimator and calibration estimator. Simulation results
showed that expansion estimator led to the biased estimate of the study
variable with relative bias about 5%, the variance estimate of the study
variable was relatively similar in both cases, however, coverage rate dropped
from 95% to 53% when expansion estimator was used in the estimation setup.
Quantifying nonresponse bias is very difficult and thus, in practice, it is rarely
possible to check how well the calibration method works. Following the
guidelines for how to choose the best set of auxiliary variables (e.g. Sdrndal
and Lundstrom 2010) should give some confidence that nonresponse bias is
reduced and with that the effect on coverage rate.

In this paper, in addition to the HT-estimator also ratio estimator was
considered for estimating the size of measurement error because it is known
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that the ratio estimator can be more efficient compared to the HT-estimator
for sampling designs with variable sample size. In the simulation study, the
ratio estimator did not behave very differently from the HT-estimator, most
likely due to the rather small sample size used in the third phase. A larger
subsample size can increase the relative efficiency of the ratio estimator.

Further, it should be noted that probabilistic editing approach relies on
the assumption that all sampled units get true values during the editing
process. This is unlikely to be so in practice, but keeping the sample size rel-
atively small the effort put into editing can be manageable. In the simulation
study only 9% of the initial sample size was used to estimate the size of the
measurement bias. So compromise needs to be found between the effort and
resources put into editing versus decreasing the precision of the estimates.

Implementation of the introduced method is not difficult as Poisson sam-
pling is available in standard statistical packages. Computing the bias cor-
rected estimates is not difficult as both terms can be obtained separately
while variance estimation needs a bit more effort as the covariance term is
not computed by standard software.

In the simulation study, a Poisson design was used in the third phase.
Different sampling designs can be implemented in practice. Combination of
selective editing, and probabilistic editing can be used where units very likely
in error are treated by selective editing and probabilistic editing is carried
out on the rest of the units. Also, Bernoulli design can be used when no
information is available for indicating the likely errors and it is probably also
more efficient in case of systematic errors in data.

Employing probabilistic editing provides information about the size of the
measurement bias, however removing measurement bias comes at the price
of an increased variance as simulation study indicated. Further research how
to balance the size of measurement bias and precision of an estimator can
be of interest. For example, the choice of point or variance estimator may
be done differently depending on whether the size of measurement bias is
considerable or negligible.

The proposed estimator does not take into account frame errors. However,
the calibration estimator can be used also to deal with frame errors given that
auxiliary information about the actual target population is available. The
estimator dealing with nonresponse and frame errors is suggested by Sarndal
and Lundstrom (2005). Thus, the calibration estimator and probabilistic
editing procedure proposed here have potential to simultaneously address
these three nonsampling error types.
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Appendix

A. Derivation of (34)

The variance estimator of the measurement bias estimator, f/(quz,), is the
sum of three terms:
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The expressions presented in (38) and (39) simplify from double sums to
single sums due to Ays, = 0 and Ay, = 0 when £ # [.

B. Derivation of (36)

The covariance estimator, Cov(yy:, tys,), is the sum of two terms:

Cov(ty, ty) = ZZ ————dpurdiq

7Tkl7rkl|sa7rl\r

ker less
kl|sa
+ g g - ———dpvrurdivig
fer lesy Rllsa M
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Having Akl = (dk — 1)dk_2, if k=1 and Akl = (dkdl — dkl)/(dkldkdl)7 if k 7£ l,
also Agyjs, = (v — ) %, if k=1 and Ay, =0 if k # 1, we get

Cov(tyy, t4s2)

Z(dk — 1) dpvpworurgy

k€sa

Z Z(dkdl - dkl)(vkuk)(vlwm%) + Z dkz(vk - 1)Ukw2kUkCIk

ker,l€sg

k£l
1.1

k€Esa
1

7 Z Uk (Ve — 1) WorUpqp

kEsa
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kEsa

?(? — 1) Z VpWorUkqr — ]Ql(n;—fl) Z Z(Ul@uk)(vlw%m)

ker,lesg

]

% > vilvr — flwasungs — J@l(n;_fl) > () (vwaa)

ker,l€sy

k£l
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