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Abstract

Given the presence of a cutoff score in a multiple-choice questions test, a
challenge for the test maker is to choose a scoring method maximizing the
probability of a passing score for those with adequate knowledge given a
prescribed risk of passing those with insufficient understanding. Within the
environment of a true-false choice test, we analyze the statistical power of the
standard method - one point if the correct answer is marked and zero otherwise —
with that of the negative marking method - no answer results in zero points, a
correct answer generates one point, and an incorrect answer is penalized by one
point. Our comparison of power between the two methods indicates that the
power is about equal when test taker exhibits a small variance in terms of her
degree of confidence across the questions. For larger variance, the negative
marking method is superior to the standard method. However, the more the test
taker fails to capture her level of confidence, i.e., mis-calibration of knowledge,
the lower statistical power of the negative marking. Which method has the highest
power depends on the magnitude of mis-calibration. Underrating does not affect
the power of NM as much as overrating.

Keywords: multiple-choice questions, negative marking, test of statistical
power

JEL: A22,C12

* Orebro University, School of Business, 701 82 Orebro, Sweden
e-mail: niklas.karlsson@oru.se

 Orebro University, School of Business, 701 82 Orebro, Sweden
e-mail: anders.lunander@oru.se (corresponding author)



1. Introduction

Multiple-choice questions tests and true-false tests play a significant role in the examination of
courses in, for example, academia. The main advantages with these types of tests — especially
for larger groups of students - are that they are relatively easy to implement, and the submitted
answers can be automated assessed, giving the test-takers instant results (see Brown 2001 for a

discussion on the merits of multiple choice versus descriptive examinations).

The structure of multiple-choice and true-false tests varies, as well as the scoring method
applied, see Lesage, Valcke and Sabbe (2013) and Kurz (1999) for overviews. In this paper we
consider the format of true-false questions, where the most common scoring method is the
number correct scoring rule. It implies that the test-taker is awarded one point if the correct
option of the two possible is chosen and zero otherwise (Kurz, 1999). The scoring rule
encourages the test-maker to always give an answer. This dominant strategy of always
answering has both positive and negative consequences. On the one hand, the strategy is
straightforward and should be easily understood by all test-takers. On the other hand, the test-
maker cannot definitively discern whether a correct answer results from a fortunate guess or if
the test-taker genuinely knows the answer. (Bar-Hillel et al., 2005 and Zapechelnyuk, 2015).
This implies that a well-informed test taker could underperform due to unfortunate
circumstances, while, conversely, a test taker with limited knowledge might exceed
expectations simply by chance. Burton (2001) and Kubinger et al. (2010) quantifies the impact

of luck 1in this scenario.

There are scoring methods designed to mitigate test score irregularities due to guessing, usually
called formula scoring rules. One such rule is proposed by Holzinger (1924), who advocates a
scoring penalty for wrong answers. In the true-false format he suggested that no answer would
result in zero points, a correct answer would be awarded by one point, and an incorrect answer
would be penalized with one point. The total score is thus the number of correct answers minus
the wrong ones. This rule has the feature of giving an expected score of zero when the test-taker
guesses an answer at random. Henceforth we will denote this rule by negative marking. A test-
taker who prefers not to guess randomly is likely to refrain from answering questions she is
unsure about. This approach can be advantageous for the test-maker as well, as unanswered
questions can indicate a lack of knowledge. Nonetheless, formula scoring has faced its share of
criticism. Budescu and Bar-Hill (1993) along with Bar-Hill et al. (2005) assert that formula

scoring fails to address the issue of guessing. They argue that a risk-neutral test-taker who can



eliminate certain options but is uncertain about the remaining ones should still take a chance

and make a guess.

The use of formula scoring can unintentionally promote guesswork, and when combined with
the varying attitudes test takers have toward risk, it can lead to further complications. Those
who are more cautious and hesitant to take risks may find themselves at a disadvantage, as their
reluctance to guess could result in lower expected scores due to a higher rate of unanswered
questions (Budescu and Bo, 2015; Burton, 2005; Choppin, 1988). For test makers, this cautious
approach introduces bias, complicating their efforts to accurately assess a test taker’s
knowledge based on their responses (Akyol et al., 2022; Muijtjens, van Mameren,

Hoogenboom, Evers, and van der Vleuten, 1999).

Espinosa and Gardeazabal, (2010) determine the best penalty amount for incorrect answers
on multiple choice assessments by analyzing student behavior through a model rooted in item
response theory. Their research indicates that the ideal penalty levels are quite high for students
who act perfectly rationally but also remains significant for those who are not entirely rational.
This means that, while the penalty tends to be unfavorable to risk-averse students, the impact

of this is minor in relation to the measurement error it helps to avoid.

Another factor that might affect this bias is the degree of mis-calibration, i.e., the size of the
discrepancies between confidence ratings and true hit rates (e.g., Lichtenstein and Fischhoff,
1977). To illustrate this point, let us consider a risk-averse test taker who chooses to answer
only those questions she feels more than 60% confident about. In addition, suppose she
underestimates her own abilities, in the sense that she would answer correctly about 70% of the
questions that she believes she is 60% sure of. Consequently, the test maker is likely to
underestimate the test-taker’s knowledge even more than would be the case if she were merely
risk-averse and perfectly calibrated in her judgments. By building on the framework
established by Espinosa and Gardeazabal (2010) and incorporating factors like mis-calibration,
Budescu and Bo (2015) reached a contrasting finding: incorporating penalties in the

scoring for multiple choice assessments is harmful.

The test taker’s strategy whether to guess or not to answer a question when being less than
100% sure, is also affected by the presence of a predetermined threshold score. A reasonable
assumption is that a test taker primarily does what she can to achieve the threshold score rather
than trying to maximize the expected score (Budescu and Bar-Hillel, 1993). For instance, if the

passing score is set at 75%, and a test-taker knows that answering 80% of the questions she is



most sure about is likely sufficient for passing, the test taker may have little motivation to
attempt the remaining questions. In fact, taking unnecessary risks with guesses could jeopardize
her ability to pass the test altogether. An assessment of test takers’ knowledge in such an
environment is likely to give a misleading result. However, given the presence of a threshold
score in a multiple-choice test, the test maker’s objective when choosing scoring method -
number correct scoring or negative marking - may not be to use the method generating the best
picture of knowledge. Instead, the choice is focused on selecting the method maximizing the
probability of a passing score for those with sufficient knowledge given a prescribed risk of

passing those with insufficient understanding.

In this paper we address this question by providing a theoretical comparison of statistical power
of two methods, number correct scoring (NCS) and negative marking (NM), used for true or
false questions. Although power functions are calculated in Lord (1953) to discriminate
between different multiple-choice tests with respect to the distribution of the item difficulty,
NM is not considered in that paper and to our knowledge a formal comparison of power between
the NM and NCS is yet not to be found in the literature. That said, there exists a row of studies
examining test reliability based on empirical findings on actual test results in the context of
multiple choice and true/false tests (e.g., Burton, 2002; Harden, Brown, Biran, Dallas
Ross, Wakeford, 1976; Muijtjens, Van Mameren, Hoogenboom, Evers, Van Der Vleuten, 1999;
Rowley GL, Traub RE., 1977). Recommendations for scoring methods are not uniform; they

vary based on the specific data set being analyzed and the reliability measures employed.

Our definition of knowledge follows the approach found in Burton (2001 and 2002), where the
exam questions take the shape of a random selection drawn from a vast pool of potential
questions. To illustrate this concept, he introduces a knowledge parameter, defined as the
proportion of questions in the question bank that the test taker maker would have answered
correctly had he attempted them all. In our work we define this knowledge parameter as 6. The
two systems are compared in terms of power to correctly detect an examinee with a sufficiently
high value of 8. Motivated by the work of Budescu and Bo (2015), we also analyze the effect

of various degrees of mis-calibration.

The rest of the paper is organized as follows. Section 2 presents the framework underlying the
further analysis. In section 3, the design of the comparison of the two methods, NCS and NM,

in terms of power, i.e., the probability of passing an exam given different values of the



knowledge parameter, is presented. The result of the comparison is provided in section 4.

Finally, section 5 contains conclusions and a discussion.

2. General Framework

2.1 Two Probability Distributions

We consider a large number of N true or false questions in a bank, from which the examiner
draws a random sample of n questions making up a test for a test taker to undergo. It is assumed
that if the test taker was given the opportunity to see all N questions in advance, she would be
able to indicate a perceived probability of giving the correct answer to each of them. Let w; be
this perceived probability on the i:th question. Furthermore, suppose these N values can be
arranged in M groups, where M << N, such that within a certain group the values of w; are the
same, while no values are the same for separate groups. Let py, ..., py be the possible M
different values and g(p) = Pr(P = p) be the probability mass function of the associated
random variable P, the test taker’s perceived probability of giving the correct answer on a
randomly drawn question from the bank. We also assume that the smallest possible value on P
is 0.5, representing a coin flip as a result of no knowledge whatsoever of the answer to the
question, while the largest possible value is 1. Consider Table 1 below, showing an example of

g(p) where M = 3.

Table 1. Example of g(p)

p Pr (P =p)
0.5 0.2
0.75 0.2

1 0.6

Here, the test taker believes she knows 60 percent of the answers with certainty and 20

percent of the answers with a probability of 0.75, while she has no knowledge whatsoever
of the answer to 20 percent of the questions.

If the test taker was to give an answer to all the questions in the bank, to each one of the M
groups of questions, there is a fraction of correct answers. For the j:th group this fraction is
denoted by 7;. If p; = 7;, Vj € {1, ..., M} the test taker perfectly assesses her ability to give

correct answers, we say that she is perfectly calibrated.



Suppose there are K unique such fractions, my, ..., mg, where K < M. To the experiment of
randomly drawing a question from the bank and observing which one of the K groups the
question belongs to, we can associate a random variable II taking the values m, ..., mx with

corresponding probabilities

Pr(ll =m,) = Zj:‘r]:nk Pr(P=p).k=1,.. K.

The probability distribution is denoted by f (7).

The two probability distributions g(p) and f () are identical when the examinee perfectly assesses her

ability to give correct answers.! Based on Table 1 this case is shown in Table 2.

Table 2. The distribution f (1) being identical to the distribution g(p)

s Pr (Il =m)
0.5 0.2
0.75 0.2

1 0.6

The interpretation is as follows. If the test taker was given the opportunity to answer all of the
N questions, she would in fact give a correct answer to all those questions she would identify
as being 100 percent confident on, making up 60 percent of the questions in the bank. Moreover,
for those 20 percent of the questions she would identify as being 75 percent sure of, she would
have a hit rate of 75 percent. Finally, she is correct in identifying those 20 percent of the
questions, where she has simply no knowledge and would give correct answers to 50 percent

of those questions.

Instead, suppose the test taker is overrating her ability based on g(p) in Table 1 in the following
way. For the group of questions that she claims to be 75 percent confident on, the hit rate is
only 65 %. Even worse, we see the same hit rate for the group of questions she would consider
safe bets. In addition, she answers only correctly on 45 percent of those questions she believes
she does not have a clue about, which might result from choosing an answer option in a
systematically unfavorable way. The resulting probability distribution f (1) is shown in Table

3. Besides, this is an example where K < M (K = 2and M = 3).

" Note that being perfectly calibrated is only a sufficient condition for the probability distributions being equal,
not necessary. To illustrate, the two distributions in Table 1 and Table 2 would also be equal if p; = 7, =
0.5,p, =7, =0.75and p; =73 = 1.



Table 3. An example where the test taker overstates her ability based on Table 1

yia Pr (I1 = n)
0.45 0.2
0.65 0.8

The distinction between perceived probability and true probability in this context is motivated
by empirical findings on misconception about ability (Lichtenstein and Fischhoff, 1977). For
further analysis on power to correctly detect an examinee with a sufficiently high value of 6,

the distributions g(p) and f (1) are both conceptually vital.
2.2 The Knowledge Parameter

Based on the distribution f(rr) defined in the previous section we operationalize knowledge in the field
in which the student is examined as the expectation of the random variable I1. Henceforth, this

expectation is denoted by 8. Thus,

9=E(H)=ZnPr(l’[=n)

T

where we label 6 as the knowledge parameter. Possible values for 8 are within the interval [0, 1] and

coincide with the proportion of correct answers the examinee would have had if she were to answer all

questions in the bank.2

3. Comparison of Statistical Power

Next, we consider the introduced testing situation with a passing predetermined cutoff. In such
a situation, a reasonable goal for the test taker is to maximize the probability of passing the
exam, i.e., to reach at least the passing cutoff level with as high a probability as possible,
conditional on her knowledge of the questions comprising the exam. For the test maker the goal
could be to choose the scoring system that maximizes the probability of a passing score for
those with adequate knowledge given a prescribed risk of passing those with insufficient

understanding.

2 0 might be smaller than 0.5 if the examinee is systematically misinformed.
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If NCS is applied there is a dominant strategy to achieve this goal, simply to give answers to
all questions. However, with NM the strategy varies, where the test taker’s risk behavior

depends on the situation.

To illustrate what is to be taken into account in the NM case, consider an exam comprising 20
true-false questions with a cutoff of 13 points, that is, at least 13 points are required to pass the
exam. As a first scenario consider a test taker 100 percent confident of the correct answer to 5
of these questions and 50 % confident, i.e., totally ignorant, of the remaining 15 questions.
Here, risk loving behavior is required to maximize the probability of passing the exam. It can
be shown that all questions, except one of the questions that she doesn't know the answer to at
all (50 % confident), should be answered.? In the second scenario we assume a test taker who
is confident with 100 percent of the correct answer to 13 of these questions and 80 % confident
with the rest. A risk-averse behavior does the trick here to maximize the probability of passing,
since only those 13 questions she is completely confident with should be answered, although

answering all questions would increase her expected total score on the exam.

In the latter scenario, if the examinee chooses the correct strategy to maximize the probability
of passing, the test maker would most likely have severely underestimated the examinee’s
knowledge parameter 8. However, for this kind of testing situation, the objective for the test
maker is not necessarily to estimate 8 as precisely as possible. Instead, we assume the goal is
to choose a scoring method that would result in a large probability for an examinee with a large

(small) value of 8 to pass (fail) the exam.

To formalize the discussion, we consider the examination as a hypothesis testing situation,
where the examiner is to decide, given the information on the result of the exam consisting of
n randomly drawn questions from the bank of N questions, whether the examinee has enough

knowledge. We would like to test

Hy: 0 <6*
against

H:0 > 0"

Thus, the test taker is considered to have enough knowledge to pass the course if and only if

the value of @ is larger than a certain amount 8. At significance level a, the examiner decides

3 In Appendix the probability model used for this calculation and all other probability calculations in this section
are presented. The model is based on the so-called Poisson binomial distribution.
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to pass the examinee if and only if the score on the exam is at least a certain number of points,
to. The total scores for the NCS design and NM design, respectively, serve as competing test

statistics.

3.1 Designing a test situation

To compare the two systems in terms of power we think of a test consisting of n = 20 randomly
drawn true or false questions from a large bank of N questions. In this setting we would like to

test

Hy: 0 < 0.75
against

Hy: 0 > 0.75

at a certain significance level a. Recall that a value of 8 equal to 0.75 may arise from infinitely

many distributions of I1. Below you find two such distributions.

Table 4. Two probability distributions of Il where 6 = E(IT) = 0.75

Distribution I Distribution II
T Pr(Il = ) T Pr(Il = )
0.5 0.5 0.75 1
1 0.5

The distribution I means that the test taker is 100 % confident of the answer to a half of the
questions in the bank and 50 % confident with the rest where, as previously mentioned, the
latter confidence represents no knowledge at all in the true or false setting. A test taker with the

distribution II is 75 % confident of the answer to all questions in the bank.

To determine a critical value t, to a certain prescribed significance level is not possible, except
for a few values of a since the underlying test statistic, the total score on the exam, is discrete.
It is also not possible to find two critical values, one for each system, corresponding to a
common level of significance. It is essential for the comparison of the two systems to overcome
these two problems. Therefore, we are considering a situation which, although not practically
possible in a real situation, is theoretically plausible to be able to get an arbitrary desired

common level of significance for both systems.



3.1.1. Critical values and randomization probabilities for the NCS method

Let the desired significance level be a = 0.25. It can be shown that a test taker with a
knowledge parameter 8 equal to 0.75 has a probability of 0.415 to score 16 points or higher,
where she gives an answer to all 20 questions. Thus, the critical value of 16 corresponds to a
significance level of 0.415. It also can be shown that a critical value of 17 corresponds to 0.225.
Therefore, 16 is too low a critical value, while 17 is too high for the desired significance level,
and a critical value in between is obviously not possible. Now, consider the situation where the
test taker meets a critical value of 16 with probability p;¢ and a critical value of 17 with

probability p;; = 1 — p44, henceforth called randomization probabilities, where

0.25-0.225

P16 = G 150225
The value 0.25 in the numerator corresponds to the desired significance level. It is easily
verified that the probability is 0.25 for such an examinee to pass the exam prior to the
randomization of the critical value to meet. The law of total probability yields the desired level

of significance as

a = Power(6 = 0.75) = p16 - 0.415 + (1 — py6) - 0.225 = 0.25.

The power for other values of 6 than 0.75 is calculated in a similar way. For example, for an
examinee with a value of 8 equal to 0.85 it can be shown that the probability to score 16 points
or higher is 0.830, while the probability to score 17 points or higher is 0.648. Therefore, we get

the power as
Power(8 = 0.85) = py4-0.830 + (1 — py6) - 0.648 = 0.672.

This means that for an examinee with a value of 8 equal to 0.85 the probability is 0.672 to pass

the exam prior to the randomization of the critical value.

3.1.2 Critical values and randomization probabilities for the NM method

Unlike the NCS method, there is no unique power for a given value of 6 for the NM method.
It appears there are three aspects to consider when relating power to the parameter 0. First, the
power for a given 8 depends on the distribution of I1. For example, if the significance level is

0.25, conditioning on distribution I in Table 4, the probability of passing the exam is lower than
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0.25 for a test taker with the distribution II than with the distribution I. It can be shown that the
probability is lower than 0.25 for any other distribution as well. Therefore, we will base our

calculation of critical values and randomization probabilities for the NM method on distribution

I in Table 4.

Second, if the two probability distributions g(p) and f () differ, the power is smaller compared
to the case where the distributions are identical. Therefore, we will also base our calculation of
critical values and randomization probabilities for the NM system on g(p) and f () being

identical.

Third, when comparing the two test situations in terms of power, we assume the test taker’s
objective is to maximize the probability of passing the exam, i.e., to get at least a certain number
of points on the exam. For an exam using NCS, it is not difficult to make reasonable
assumptions about the test taker’s behavior consistent with that objective. She will simply give
answers to all questions, irrespective of perceived confidence level. When the test taker is facing
an exam using NM, it is by no means evident that the test taker has the cognitive skills to act
consistently with the objective of maximizing the probability of passing. To illustrate the
complexity a test taker may face, suppose that 13 points is the cutoff to pass an exam with 20
questions. Moreover, suppose the student is 90 % confident of all 20 questions. To maximize
the probability of passing in this case, the test taker should give answers only to 19 questions,
even though the expected number of points increases if she gives answers to all questions.
However, for all power calculations in this paper, we will assume the test taker always is capable
to pick the optimal strategy of maximizing the probability of passing given the confidence level
on the questions, although this might not always be the case in practice. Therefore, the
assumption most likely means that the power calculations for the NM test situation provide an

upper limit.

Taking these three aspects into account, to find critical values and randomization probabilities
for the NM test situation, we condition on a test taker having the distribution I in Table 4, where
this distribution also coincides with her distribution of perceived probabilities, g(p). We also
stipulate that she has the skills to maximize the probability of passing given her perceived

probability of correct answers to the questions.

For a fair comparison of the two methods, we work with the same significance level ¢ = 0.25.
For the NM method, the test taker, with the characteristics referred to above, has a maximum

probability of 0.343 to score 13 points or higher and a maximum probability of 0.241 to score
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14 points or higher. Thus, a critical value of 13 corresponds to a significance level of 0.343,
while a critical value of 14 corresponds to 0.241. Randomization probabilities are now
determined in a similar way to how we determined the corresponding probabilities for the NCS
method. We consider the situation where the test taker meets a critical value of 13 with

probability p;; and a critical value of 14 with probability p;4, = 1 — p;3, where

0.25-0.241

P13 = (3230241

Now, the probability is 0.25 for such a test taker to pass the exam prior to the randomization.

We get

a = Power(6 = 0.75) = p;3-0.343 + (1 — p;3) - 0.241 = 0.25.

The power for test takers with other characteristics is calculated accordingly. For example,
suppose a test taker is 100 % confident of the answer to 70 % of the questions in the bank and
50 % confident of the answers on the rest of the questions. This results in a value of 6 equal to
0.85. Also, suppose her perceived probabilities coincide with the corresponding true
probabilities. Then, it can be shown that the probability to score 13 points or higher is 0.864,
while the probability to score 14 points or higher is 0.755. Therefore, the power is given by

Power(6 = 0.85) = p;3-0.864 + (1 — p;3) - 0.755 = 0.765.

Thus, for this test taker, the NM method is preferred over the NCS method since the power is
higher, 0,765 compared to 0,672. However, this is not always the case. In the next section we
will examine and compare the two methods’ statistical power for different distributions of I1

and under different assumptions about the deviation of g(p) from f (7).

4. Results

In this section we present the results from our comparison of statistical power. We divide the
comparisons into two cases. First, it is assumed that perceived probabilities coincide with true

probabilities. Second, we allow for a deviation of perceived and true probabilities.
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4.1 Perceived probabilities coincide with true probabilities

Consider Figure 1. Here, it is assumed that the two distributions g(p) and f () do not differ.
The red curve shows the power of the NCS method or different values of 6. For this method,
the power for a given value of 8 is not affected by the appearance of f (). The power increases
in 6, and takes the significance level 0.25 at 8 = 0.75. The green curve shows the power for
different values of 8, where II can take on values 0.5 and 1, only. Thus, for this situation the
variance of II is high, given the value of 6. For this case, the NM method outperforms the NCS
method. For 8 > 0.75, i.e., values of 8 representing a knowledge level that we believe is
enough, the probability of passing is higher for the NM method, holding the significance level
constant at 0.25 for both methods. Also, for low levels of knowledge the probability is lower to
pass the test making use of the NM system.
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Figure 1. Power comparisons of NCS (red line) with NM (green line) based on an exam with
20 true or false questions sampled from distributions of Il which only assumes values of 0.5
and 1. Perceived probabilities coincide with true ones. The significance level is set at (.25.
The difference in power is especially high for values of 8 around 0.85-0.90. This result can be
intuitively explained as follows. A test taker with a value of 8 equal to 0.875, where the
difference seems to peak, has complete knowledge of 75 % of the questions in the bank. This
means that the expected number of such questions the test taker will face on the exam is 15 and,

using the NM method, it is likely that the randomized number of such questions will exceed the
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critical values, 13 or 14. Thus, it is likely that the test taker will pass the exam, without
depending on sheer chance for the answers to questions she is unfamiliar with, as she will refrain
from answering to those types of questions to increase her probability of passing. For the NCS
method the critical values are higher, 16 or 17 depending on the randomization. This means that
the number of questions the test taker will know for sure on the exam, is most likely below the
critical value. The risk is not negligible that the achieved score on the questions the test taker

will guess at, is not high enough for her to pass the exam.

Turning to Figure 2, the red curve is the same as in Figure 2 showing the power for the NCS-
method. The green curve shows the power of the NM method for the case when all questions
in the bank have the same confidence level, for a given value of 6. For example, a value of 8
equal to 0.75 means that the test taker is 75 % confident on all questions. Unlike the situation
displayed in Figure 1, here the variance of Il is low, in this case zero, given different values of
6. The two power curves do not differ much in this case. The reason is that the test taker, also
with the NM method, will answer pretty much all questions to maximize the probability of
passing.* The reason why the power of the NM method is even somewhat lower than the NCS
method in this case is, as discussed above, that the critical values and the randomization
probabilities are based on the case displayed in Figure 1, where the test taker knows a fraction

of the questions with certainty.

4 She will answer 19 questions if the critical value is 13, all 20 questions otherwise.
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Figure 2. Power comparisons of NCS (red line) with NM (green line) based on an exam with
20 true or false questions sampled from distributions of I1 which each assumes one value,
only. Perceived probabilities coincide with true ones. The significance level is set at (.25.

4.2 Perceived probabilities deviate from true probabilities

Consider Figure 3 showing the effect on power of overrating one’s knowledge. All curves
correspond to a distribution where P takes on the values 0.5 and 1, only. Thus, the test taker’s
perception is either no knowledge or total knowledge. The red and green curves are the same
as in Figure 2. These two curves serve as baselines and correspond to the case where the
examinee correctly perceives that she knows the answer with certainty of a fraction of the

questions in the bank, while having no knowledge of the rest.

To illustrate the effect of overestimating one's knowledge two more curves are added to the
figure, a blue and a yellow curve. These curves show the power of the NM method where the
perceived probabilities deviate from the true ones. The blue and the yellow curves correspond
to the cases where the test taker has a hit rate of 95 % and 90 %, respectively, on those questions
that she thinks she knows the answer with certainty. This means we are considering a situation
where the test taker overrates her knowledge. The drop in power is seen to be quite substantial,

especially for values of 8 in the range of 0.80 — 0.90. Under these circumstances the NM method
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is outperformed by the NCS method. There is an intuitive explanation for this loss in power.
For values of 8 in this range, it is not unlikely that the number of questions the examinee thinks
she knows will exceed the critical value, while the actual number does not. For such a situation,
she will not give answers to the other questions and thereby fail the exam. In case the perceived
probabilities are the same as the true ones, the examinee would have taken a chance on some

of the other questions and thereby increased her chances to pass the exam.
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Figure 3. Power comparisons of NCS (red line) with NM (green, blue, and yellow lines). The red and
green lines are based on the same situation displayed in Figure 1. The blue line corresponds to a
situation where the examinee has a hit rate of 95 % on those questions that she thinks she can with
certainty, while the yellow curve represents a hit rate of 90 % on the same questions. The significance
level is set at 0.25.

Figure 4 sheds light on the impact of underrating one’s knowledge. The red curve, as usual,
represents the power for the NCS method and serves as a benchmark. The blue curve represents
a situation where the test taker faces two types of questions, either questions she thinks she is
95 % confident with or questions for which she has no knowledge of. Moreover, we assume the
hit rate is actually 100 % on the first type of questions, meaning that she underrates her
knowledge. A little surprise is that the blue curve in Figure 4 is identical to the green curve in
Figure 3. Thus, a slight underestimation of one’s knowledge does not affect the power. The
reason for this is that the test taker will continue to select the same questions to answer to

maximize her probability of passing the exam, just as she would when her perceived
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probabilities align with the true probabilities. When the underestimation becomes larger, the
power decreases, as shown by the yellow curve. Here, the questions in the bank are either
questions she thinks she is 90 % confident with or questions that she has no knowledge of. For
the first type of questions, we still assume a hit rate of 100 %. How do we understand why the
power decreases at most where 6 is in the range 0.85 — 0.90? For such values of 6, it is not an
unlikely outcome that the number of questions the test taker thinks she knows the answer of
with a confidence of 90 %, is considered too few, causing her not to refrain from taking a chance
on the rest of the questions. However, the actual number of questions the test taker knows the
answer of could be adequate for her to successfully pass the exam without needing to
take chances on the other questions. Thus, underestimation of the knowledge might result in the
examinee unnecessarily taking a chance on the questions she does not know and that gambling

results in a worse outcome. The power is now close to the power of the NCS method.
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Figure 4. Power comparisons of NCS (red line) with NM (blue, and yellow lines) based on an exam
with 20 true or false questions sampled from distributions of Il which only assumes values of 0.5 and
1. The two NM curves both represent situations where the examinee faces two types of questions,
either questions she thinks she is almost certain on, while having a hit rate of 100 % on, or questions
where she has no knowledge of. Almost certain means 95 % for the blue curve and 90 % for the yellow
one. The significance level is set at 0.25.
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5. Conclusions and Discussion

The paper presents a theoretical comparison of statistical power of the NCS and the NM
methods used for true or false questions. The analysis is based on randomly drawing a certain
number of questions, constituting an exam, from a large bank of questions. For the NCS method
the test taker gets 1 point if the answer to the question is correct, 0 points otherwise. The NM
method penalizes an incorrect answer with -1 point, while a correct answer is still rewarded
with 1 point. Not answering the question results in 0 points. To compare the two methods, a
knowledge parameter 6 is defined as the average number of correct answers the test taker would

have if she were to answer all questions in the bank.

We compare the two methods in terms of statistical power, i.e., we examine which method,
based on the total score on the exam, has the highest probability to correctly pass a test taker

who has a sufficiently high value on 6.

As to the result of the comparison, we do not identify a clear winner. The choice of method
relies on various factors. For the situation where the variance of I1 is small, the two methods
are about equal. The explanation is that for such a situation the test taker will give answers to
more or less all of the questions on the exam for both methods. Things are getting more exciting
when we consider the opposite situation where the variance of II is large. For this case, the
results differ depending on whether the examinee correctly perceives her confidence level or
not. If the level is perceived correctly, the power for NM is higher than for NCS. However, if
the examinee either overrates or underrates her confidence level, the power of NM typically
falls. Similar negative effects of mis-calibration is also found in Budescu and Bo (2015). Which
method has the highest power depends on the magnitude of mis-calibration. Also, underrating

does not affect the power of NM as much as overrating.

An assumption going through all the power calculations for NM is that the test taker has the
ability to choose the strategy that maximizes the probability of passing the exam given her
confidence ratings. It is not unlikely that this assumption is too strong in many situations, and
it is possible that the test takers’ skills in this regard vary, and that this possible variation can
have major effects on the probability of passing the exam. To illustrate, suppose that 14 points
is the lower limit to pass an exam with 20 questions. Moreover, suppose the test taker is 90 %
confident of 18 questions and 55 % confident of 2 questions. To maximize the probability of
passing in this case, the test taker should give answers only to the 18 questions being 90 %

confident of, even though the expected number of points increases if she gives answers to all
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questions. The optimal strategy yields a probability of passing of 0.734 while answering all 20
questions reduces the probability to 0.727. This is a small drop. However, things are getting
worse if the test taker gives an answer only to 16 of those questions that she is most sure of.
Then, the probability of passing diminishes to 0.514, which must be considered a not negligible
drop.

Thus, it would be interesting to investigate the test takers’ skills in this regard, both considering
the average skill and the variation in skills among test takers. If the average skill is low, many
test takers would be better off in terms of power with an NS exam. A large variation in skills
would imply that some test takers would be disadvantaged by the NM method, while others
would not, certainly this is a negative external effect of this method. Therefore, if this is the
case, using the NM method would require a simple rule-of- thumb-guide to the test takers which
questions to answer given their confidence levels. Developing such a guide is subject of future

research.

Appendix

This Appendix presents the method used to find which questions to give answers to in the NM
case and how to calculate the corresponding maximized probability of passing the exam. The
method is based on the so-called Poisson binomial distribution being identified as part of a

suitable probability model for the score on the exam.

Before we explain how to tackle the maximization issue, we first outline the Poisson binomial
distribution. This distribution represents the probability of a discrete random variable X, which
is defined as the sum of n independent Bernoulli trials, not necessarily identically distributed,
with success probabilities p4, p,, ..., pn. The Binomial distribution is a special case, all success

probabilities being equal. Following Wang (1993), the probability mass function of X is given

rax=x=>[[n] Ja-»rp.

AEF, i€A  jeAC

by

where F, is the set of all subsets of x integers that can be selected from {1, 2, ..., n}, while A€ is

the complement of A.
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Now, arrange the exam questions in order from highest to lowest based
on the likelihood of providing the correct response. In addition, define p;, i = 1, 2, ..., 20, to be
the probability of giving a correct answer to the i:th question with respect to this order. Also, in
line with this order, the student optstorespond ton of the 20 questions and not
answer the others.” Define the random variable X,, to be the number of correct answers on the
n questions. It follows a Poisson binomial distribution with success probabilities py, ..., Py.
The score on the exam, denoted by Y,,, can now be expressed as ¥, = X, — (n — X,,) = 2X,, —
n, where the first equality follows from the way the scoring system is designed with negative

marking used.

For a predetermined passing limit of 13 points, we can solve the maximization problem by

n+13
2

calculating P(Y,, = 13) = P(X,, > ) for various values of n and choosing that value of n

for which P(Y, = 13) is maximized. Up to 8 potential values for n should be examined
because responding to fewer than 13 questions leads toazero chance of passing

the test. Utilizing the above probability mass functionto determine these probabilities

n!

can be rather tedious. To sum over all elements in the set F, might even be infeasible in

(n—x)'x!
practice unless n is small. Nonetheless, there are other, more efficient methods to determine
the probabilities, such as employing a discrete Fourier transform (Hong, 2013), which

is a method utilized in the r-package PoissonBinomial, version 1.2.7.

SIifp; >p j» it cannot be optimal to answer the j:th question and not to answer the i:th question.
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