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Abstract 

Given the presence of a cutoff score in a multiple-choice questions test, a 
challenge for the test maker is to choose a scoring method maximizing the 
probability of a passing score for those with adequate knowledge given a 
prescribed risk of passing those with insufficient understanding. Within the 
environment of a true-false choice test, we analyze the statistical power of the 
standard method - one point if the correct answer is marked and zero otherwise – 
with that of the negative marking method - no answer results in zero points, a 
correct answer generates one point, and an incorrect answer is penalized by one 
point. Our comparison of power between the two methods indicates that the 
power is about equal when test taker exhibits a small variance in terms of her 
degree of confidence across the questions. For larger variance, the negative 
marking method is superior to the standard method. However, the more the test 
taker fails to capture her level of confidence, i.e., mis-calibration of knowledge,  
the lower statistical power of the negative marking. Which method has the highest 
power depends on the magnitude of mis-calibration. Underrating does not affect 
the power of NM as much as overrating.   
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1. Introduction 

Multiple-choice questions tests and true-false tests play a significant role in the examination of 

courses in, for example, academia. The main advantages with these types of tests – especially 

for larger groups of students - are that they are relatively easy to implement, and the submitted 

answers can be automated assessed, giving the test-takers instant results (see Brown 2001 for a 

discussion on the merits of multiple choice versus descriptive examinations).   

The structure of multiple-choice and true-false tests varies, as well as the scoring method 

applied, see Lesage, Valcke and Sabbe (2013) and Kurz (1999) for overviews. In this paper we 

consider the format of true-false questions, where the most common scoring method is the 

number correct scoring rule. It implies that the test-taker is awarded one point if the correct 

option of the two possible is chosen and zero otherwise (Kurz, 1999). The scoring rule 

encourages the test-maker to always give an answer. This dominant strategy of always 

answering has both positive and negative consequences. On the one hand, the strategy is 

straightforward and should be easily understood by all test-takers. On the other hand, the test-

maker cannot definitively discern whether a correct answer results from a fortunate guess or if 

the test-taker genuinely knows the answer. (Bar-Hillel et al., 2005 and Zapechelnyuk, 2015). 

This implies that a well-informed test taker could underperform due to unfortunate 

circumstances, while, conversely, a test taker with limited knowledge might exceed 

expectations simply by chance. Burton (2001) and Kubinger et al. (2010) quantifies the impact 

of luck in this scenario.  

There are scoring methods designed to mitigate test score irregularities due to guessing, usually 

called formula scoring rules. One such rule is proposed by Holzinger (1924), who advocates a 

scoring penalty for wrong answers. In the true-false format he suggested that no answer would 

result in zero points, a correct answer would be awarded by one point, and an incorrect answer 

would be penalized with one point. The total score is thus the number of correct answers minus 

the wrong ones. This rule has the feature of giving an expected score of zero when the test-taker 

guesses an answer at random. Henceforth we will denote this rule by negative marking. A test-

taker who prefers not to guess randomly is likely to refrain from answering questions she is 

unsure about. This approach can be advantageous for the test-maker as well, as unanswered 

questions can indicate a lack of knowledge. Nonetheless, formula scoring has faced its share of 

criticism. Budescu and Bar-Hill (1993) along with Bar-Hill et al. (2005) assert that formula 

scoring fails to address the issue of guessing. They argue that a risk-neutral test-taker who can 
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eliminate certain options but is uncertain about the remaining ones should still take a chance 

and make a guess. 

The use of formula scoring can unintentionally promote guesswork, and when combined with 

the varying attitudes test takers have toward risk, it can lead to further complications. Those 

who are more cautious and hesitant to take risks may find themselves at a disadvantage, as their 

reluctance to guess could result in lower expected scores due to a higher rate of unanswered 

questions (Budescu and Bo, 2015; Burton, 2005; Choppin, 1988). For test makers, this cautious 

approach introduces bias, complicating their efforts to accurately assess a test taker’s 

knowledge based on their responses (Akyol et al., 2022; Muijtjens, van Mameren, 

Hoogenboom, Evers, and van der Vleuten, 1999).  

Espinosa and Gardeazabal, (2010) determine the best penalty amount for incorrect answers 

on multiple choice assessments by analyzing student behavior through a model rooted in item 

response theory. Their research indicates that the ideal penalty levels are quite high for students 

who act perfectly rationally but also remains significant for those who are not entirely rational. 

This means that, while the penalty tends to be unfavorable to risk-averse students, the impact 

of this is minor in relation to the measurement error it helps to avoid.  

Another factor that might affect this bias is the degree of mis-calibration, i.e., the size of the 

discrepancies between confidence ratings and true hit rates (e.g., Lichtenstein and Fischhoff, 

1977). To illustrate this point, let us consider a risk-averse test taker who chooses to answer 

only those questions she feels more than 60% confident about. In addition, suppose she 

underestimates her own abilities, in the sense that she would answer correctly about 70% of the 

questions that she believes she is 60% sure of. Consequently, the test maker is likely to 

underestimate the test-taker’s knowledge even more than would be the case if she were merely 

risk-averse and perfectly calibrated in her judgments.  By building on the framework 

established by Espinosa and Gardeazabal (2010) and incorporating factors like mis-calibration, 

Budescu and Bo (2015) reached a contrasting finding: incorporating penalties in the 

scoring for multiple choice assessments is harmful.  

The test taker’s strategy whether to guess or not to answer a question when being less than 

100% sure, is also affected by the presence of a predetermined threshold score. A reasonable 

assumption is that a test taker primarily does what she can to achieve the threshold score rather 

than trying to maximize the expected score (Budescu and Bar-Hillel, 1993). For instance, if the 

passing score is set at 75%, and a test-taker knows that answering 80% of the questions she is 
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most sure about is likely sufficient for passing, the test taker may have little motivation to 

attempt the remaining questions. In fact, taking unnecessary risks with guesses could jeopardize 

her ability to pass the test altogether. An assessment of test takers’ knowledge in such an 

environment is likely to give a misleading result. However, given the presence of a threshold 

score in a multiple-choice test, the test maker’s objective when choosing scoring method - 

number correct scoring or negative marking - may not be to use the method generating the best 

picture of knowledge. Instead, the choice is focused on selecting the method maximizing the 

probability of a passing score for those with sufficient knowledge given a prescribed risk of 

passing those with insufficient understanding.  

In this paper we address this question by providing a theoretical comparison of statistical power 

of two methods, number correct scoring (NCS) and negative marking (NM), used for true or 

false questions. Although power functions are calculated in Lord (1953) to discriminate 

between different multiple-choice tests with respect to the distribution of the item difficulty, 

NM is not considered in that paper and to our knowledge a formal comparison of power between 

the NM and NCS is yet not to be found in the literature. That said, there exists a row of studies 

examining test reliability based on empirical findings on actual test results in the context of 

multiple choice and true/false tests (e.g., Burton, 2002; Harden, Brown, Biran, Dallas 

Ross, Wakeford, 1976; Muijtjens, Van Mameren, Hoogenboom, Evers, Van Der Vleuten, 1999; 

Rowley GL, Traub RE., 1977). Recommendations for scoring methods are not uniform; they 

vary based on the specific data set being analyzed and the reliability measures employed.  

Our definition of knowledge follows the approach found in Burton (2001 and 2002), where the 

exam questions take the shape of a random selection drawn from a vast pool of potential 

questions. To illustrate this concept, he introduces a knowledge parameter, defined as the 

proportion of questions in the question bank that the test taker maker would have answered 

correctly had he attempted them all.  In our work we define this knowledge parameter as 𝜃𝜃. The 

two systems are compared in terms of power to correctly detect an examinee with a sufficiently 

high value of 𝜃𝜃. Motivated by the work of Budescu and Bo (2015), we also analyze the effect 

of various degrees of mis-calibration. 

The rest of the paper is organized as follows. Section 2 presents the framework underlying the 

further analysis. In section 3, the design of the comparison of the two methods, NCS and NM, 

in terms of power, i.e., the probability of passing an exam given different values of the 
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knowledge parameter, is presented. The result of the comparison is provided in section 4. 

Finally, section 5 contains conclusions and a discussion. 

 

2. General Framework 

2.1 Two Probability Distributions  

We consider a large number of 𝑁𝑁 true or false questions in a bank, from which the examiner 

draws a random sample of 𝑛𝑛 questions making up a test for a test taker to undergo. It is assumed 

that if the test taker was given the opportunity to see all N questions in advance, she would be 

able to indicate a perceived probability of giving the correct answer to each of them. Let 𝑤𝑤𝑖𝑖 be 

this perceived probability on the 𝑖𝑖:th question. Furthermore, suppose these 𝑁𝑁 values can be 

arranged in 𝑀𝑀 groups, where 𝑀𝑀 ≪ 𝑁𝑁, such that within a certain group the values of 𝑤𝑤𝑖𝑖 are the 

same, while no values are the same for separate groups. Let 𝑝𝑝1, … ,𝑝𝑝𝑀𝑀 be the possible 𝑀𝑀 

different values and 𝑔𝑔(𝑝𝑝) = 𝑃𝑃𝑃𝑃(𝑃𝑃 = 𝑝𝑝) be the probability mass function of the associated 

random variable 𝑃𝑃, the test taker’s perceived probability of giving the correct answer on a 

randomly drawn question from the bank.  We also assume that the smallest possible value on 𝑃𝑃 

is 0.5, representing a coin flip as a result of no knowledge whatsoever of the answer to the 

question, while the largest possible value is 1. Consider Table 1 below, showing an example of 

𝑔𝑔(𝑝𝑝) where 𝑀𝑀 = 3. 

Table 1. Example of 𝑔𝑔(𝑝𝑝) 
𝑝𝑝 Pr (𝑃𝑃 = 𝑝𝑝) 

0.5 0.2 
0.75 0.2 

1 0.6 
 

Here, the test taker believes she knows 60 percent of the answers with certainty and 20 

percent of the answers with a probability of 0.75, while she has no knowledge whatsoever  

of the answer to 20 percent of the questions. 

If the test taker was to give an answer to all the questions in the bank, to each one of the 𝑀𝑀 

groups of questions, there is a fraction of correct answers. For the  𝑗𝑗: 𝑡𝑡ℎ group this fraction is 

denoted by 𝜏𝜏𝑗𝑗. If 𝑝𝑝𝑗𝑗 = 𝜏𝜏𝑗𝑗 , ∀𝑗𝑗 ∈ {1, … ,𝑀𝑀} the test taker perfectly assesses her ability to give 

correct answers, we say that she is perfectly calibrated.  
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Suppose there are 𝐾𝐾 unique such fractions, 𝜋𝜋1, … ,𝜋𝜋𝐾𝐾, where 𝐾𝐾 ≤ 𝑀𝑀. To the experiment of 

randomly drawing a question from the bank and observing which one of the 𝐾𝐾 groups the 

question belongs to, we can associate a random variable Π taking the values 𝜋𝜋1, … ,𝜋𝜋𝐾𝐾 with 

corresponding probabilities 

𝑃𝑃𝑃𝑃(Π = 𝜋𝜋𝑘𝑘) = ∑ 𝑃𝑃𝑃𝑃(𝑃𝑃 = 𝑝𝑝𝑗𝑗𝑗𝑗:𝜏𝜏𝑗𝑗=𝜋𝜋𝑘𝑘 ), 𝑘𝑘 = 1, … ,𝐾𝐾. 

The probability distribution is denoted by 𝑓𝑓(𝜋𝜋).  

The two probability distributions 𝑔𝑔(𝑝𝑝) and 𝑓𝑓(𝜋𝜋) are identical when the examinee perfectly assesses her 

ability to give correct answers.1 Based on Table 1 this case is shown in Table 2.  

Table 2. The distribution 𝑓𝑓(𝜋𝜋) being identical to the distribution 𝑔𝑔(𝑝𝑝) 
𝜋𝜋 Pr (Π = 𝜋𝜋) 

0.5 0.2 
0.75 0.2  

1 0.6  
 

The interpretation is as follows. If the test taker was given the opportunity to answer all of the 

N questions, she would in fact give a correct answer to all those questions she would identify 

as being 100 percent confident on, making up 60 percent of the questions in the bank. Moreover, 

for those 20 percent of the questions she would identify as being 75 percent sure of, she would 

have a hit rate of 75 percent. Finally, she is correct in identifying those 20 percent of the 

questions, where she has simply no knowledge and would give correct answers to 50 percent 

of those questions.  

Instead, suppose the test taker is overrating her ability based on 𝑔𝑔(𝑝𝑝) in Table 1 in the following 

way. For the group of questions that she claims to be 75 percent confident on, the hit rate is 

only 65 %. Even worse, we see the same hit rate for the group of questions she would consider 

safe bets. In addition, she answers only correctly on 45 percent of those questions she believes 

she does not have a clue about, which might result from choosing an answer option in a 

systematically unfavorable way. The resulting probability distribution 𝑓𝑓(𝜋𝜋) is shown in Table 

3. Besides, this is an example where 𝐾𝐾 < 𝑀𝑀 (𝐾𝐾 = 2 and 𝑀𝑀 = 3). 

 

 
1 Note that being perfectly calibrated is only a sufficient condition for the probability distributions being equal, 
not necessary. To illustrate, the two distributions in Table 1 and Table 2 would also be equal if 𝑝𝑝1 = 𝜏𝜏2 =
0.5, 𝑝𝑝2 = 𝜏𝜏1 = 0.75 and 𝑝𝑝3 = 𝜏𝜏3 = 1. 
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Table 3. An example where the test taker overstates her ability based on Table 1 
 

𝜋𝜋 Pr (Π = 𝜋𝜋) 
0.45 0.2 
0.65 0.8 

 

The distinction between perceived probability and true probability in this context is motivated 

by empirical findings on misconception about ability (Lichtenstein and Fischhoff, 1977). For 

further analysis on power to correctly detect an examinee with a sufficiently high value of 𝜃𝜃, 

the distributions 𝑔𝑔(𝑝𝑝) and 𝑓𝑓(𝜋𝜋) are both conceptually vital.  

2.2 The Knowledge Parameter   

Based on the distribution 𝑓𝑓(𝜋𝜋) defined in the previous section we operationalize knowledge in the field 

in which the student is examined as the expectation of the random variable Π. Henceforth, this 

expectation is denoted by 𝜃𝜃. Thus, 

𝜃𝜃 = 𝐸𝐸(Π) = �𝜋𝜋
𝜋𝜋

Pr (Π = 𝜋𝜋) 

where we label 𝜃𝜃 as the knowledge parameter. Possible values for 𝜃𝜃 are within the interval [0, 1] and 

coincide with the proportion of correct answers the examinee would have had if she were to answer all 

questions in the bank.2 

 

3. Comparison of Statistical Power  

Next, we consider the introduced testing situation with a passing predetermined cutoff. In such 

a situation, a reasonable goal for the test taker is to maximize the probability of passing the 

exam, i.e., to reach at least the passing cutoff level with as high a probability as possible, 

conditional on her knowledge of the questions comprising the exam. For the test maker the goal 

could be to choose the scoring system that maximizes the probability of a passing score for 

those with adequate knowledge given a prescribed risk of passing those with insufficient 

understanding.  

 
2 𝜃𝜃 might be smaller than 0.5 if the examinee is systematically misinformed. 
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If NCS is applied there is a dominant strategy to achieve this goal, simply to give answers to 

all questions. However, with NM the strategy varies, where the test taker’s risk behavior 

depends on the situation.   

To illustrate what is to be taken into account in the NM case, consider an exam comprising 20 

true-false questions with a cutoff of 13 points, that is, at least 13 points are required to pass the 

exam. As a first scenario consider a test taker 100 percent confident of the correct answer to 5 

of these questions and 50 % confident, i.e., totally ignorant, of the remaining 15 questions. 

Here, risk loving behavior is required to maximize the probability of passing the exam. It can 

be shown that all questions, except one of the questions that she doesn't know the answer to at 

all (50 % confident), should be answered.3 In the second scenario we assume a test taker who 

is confident with 100 percent of the correct answer to 13 of these questions and 80 % confident 

with the rest. A risk-averse behavior does the trick here to maximize the probability of passing, 

since only those 13 questions she is completely confident with should be answered, although 

answering all questions would increase her expected total score on the exam.  

In the latter scenario, if the examinee chooses the correct strategy to maximize the probability 

of passing, the test maker would most likely have severely underestimated the examinee’s 

knowledge parameter 𝜃𝜃. However, for this kind of testing situation, the objective for the test 

maker is not necessarily to estimate 𝜃𝜃 as precisely as possible. Instead, we assume the goal is 

to choose a scoring method that would result in a large probability for an examinee with a large 

(small) value of 𝜃𝜃 to pass (fail) the exam.   

To formalize the discussion, we consider the examination as a hypothesis testing situation, 

where the examiner is to decide, given the information on the result of the exam consisting of 

𝑛𝑛 randomly drawn questions from the bank of 𝑁𝑁 questions, whether the examinee has enough 

knowledge. We would like to test 

𝐻𝐻0: 𝜃𝜃 ≤ 𝜃𝜃∗ 

 against 

                                                                    𝐻𝐻1: 𝜃𝜃 > 𝜃𝜃∗. 

Thus, the test taker is considered to have enough knowledge to pass the course if and only if 

the value of 𝜃𝜃 is larger than a certain amount 𝜃𝜃∗. At significance level 𝛼𝛼,  the examiner decides 

 
3 In Appendix the probability model used for this calculation and all other probability calculations in this section 
are presented. The model is based on the so-called Poisson binomial distribution.  
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to pass the examinee if and only if the score on the exam is at least a certain number of points, 

𝑡𝑡0. The total scores for the NCS design and NM design, respectively, serve as competing test 

statistics.  

 

3.1 Designing a test situation  

To compare the two systems in terms of power we think of a test consisting of  𝑛𝑛 = 20 randomly 

drawn true or false questions from a large bank of 𝑁𝑁 questions. In this setting we would like to 

test 

𝐻𝐻0: 𝜃𝜃 ≤ 0.75 

against  

𝐻𝐻1: 𝜃𝜃 > 0.75 

at a certain significance level 𝛼𝛼. Recall that a value of 𝜃𝜃 equal to 0.75 may arise from infinitely 

many distributions of Π. Below you find two such distributions. 

 

Table 4. Two probability distributions of 𝛱𝛱 where 𝜃𝜃 = 𝐸𝐸(𝛱𝛱) = 0.75 
Distribution I Distribution II 

π Pr(Π = π) π Pr(Π = π) 
0.5 0.5 0.75 1 
1 0.5   

 

The distribution I means that the test taker is 100 % confident of the answer to a half of the 

questions in the bank and 50 % confident with the rest where, as previously mentioned, the 

latter confidence represents no knowledge at all in the true or false setting. A test taker with the 

distribution II is 75 % confident of the answer to all questions in the bank.  

To determine a critical value 𝑡𝑡0 to a certain prescribed significance level is not possible, except 

for a few values of 𝛼𝛼 since the underlying test statistic, the total score on the exam, is discrete. 

It is also not possible to find two critical values, one for each system, corresponding to a 

common level of significance. It is essential for the comparison of the two systems to overcome 

these two problems. Therefore, we are considering a situation which, although not practically 

possible in a real situation, is theoretically plausible to be able to get an arbitrary desired 

common level of significance for both systems.  
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3.1.1. Critical values and randomization probabilities for the NCS method 

Let the desired significance level be 𝛼𝛼 = 0.25. It can be shown that a test taker with a 

knowledge parameter 𝜃𝜃 equal to 0.75 has a probability of 0.415 to score 16 points or higher, 

where she gives an answer to all 20 questions. Thus, the critical value of 16 corresponds to a 

significance level of 0.415. It also can be shown that a critical value of 17 corresponds to 0.225. 

Therefore, 16 is too low a critical value, while 17 is too high for the desired significance level, 

and a critical value in between is obviously not possible. Now, consider the situation where the 

test taker meets a critical value of 16 with probability 𝑝𝑝16 and a critical value of 17 with 

probability 𝑝𝑝17 = 1 − 𝑝𝑝16, henceforth called randomization probabilities, where  

𝑝𝑝16 = 0.25−0.225
0.415−0.225

. 

The value 0.25 in the numerator corresponds to the desired significance level. It is easily 

verified that the probability is 0.25 for such an examinee to pass the exam prior to the 

randomization of the critical value to meet. The law of total probability yields the desired level 

of significance as 

                       𝛼𝛼 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜃𝜃 = 0.75) = 𝑝𝑝16 ∙ 0.415 + (1 − 𝑝𝑝16) ∙ 0.225 = 0.25. 

 

The power for other values of 𝜃𝜃 than 0.75 is calculated in a similar way. For example, for an 

examinee with a value of 𝜃𝜃 equal to 0.85 it can be shown that the probability to score 16 points 

or higher is 0.830, while the probability to score 17 points or higher is 0.648. Therefore, we get 

the power as 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜃𝜃 = 0.85) = 𝑝𝑝16 ∙ 0.830 + (1 − 𝑝𝑝16) ∙ 0.648 = 0.672. 

This means that for an examinee with a value of 𝜃𝜃 equal to 0.85 the probability is 0.672 to pass 

the exam prior to the randomization of the critical value.  

 

3.1.2 Critical values and randomization probabilities for the NM method 

Unlike the NCS method, there is no unique power for a given value of 𝜃𝜃 for the NM method. 

It appears there are three aspects to consider when relating power to the parameter θ. First, the 

power for a given 𝜃𝜃 depends on the distribution of Π. For example, if the significance level is 

0.25, conditioning on distribution I in Table 4, the probability of passing the exam is lower than 
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0.25 for a test taker with the distribution II than with the distribution I. It can be shown that the 

probability is lower than 0.25 for any other distribution as well. Therefore, we will base our 

calculation of critical values and randomization probabilities for the NM method on distribution 

I in Table 4.  

Second, if the two probability distributions 𝑔𝑔(𝑝𝑝) and 𝑓𝑓(𝜋𝜋) differ, the power is smaller compared 

to the case where the distributions are identical. Therefore, we will also base our calculation of 

critical values and randomization probabilities for the NM system on 𝑔𝑔(𝑝𝑝) and 𝑓𝑓(𝜋𝜋) being 

identical.  

Third, when comparing the two test situations in terms of power, we assume the test taker’s 

objective is to maximize the probability of passing the exam, i.e., to get at least a certain number 

of points on the exam. For an exam using NCS, it is not difficult to make reasonable 

assumptions about the test taker’s behavior consistent with that objective. She will simply give 

answers to all questions, irrespective of perceived confidence level. When the test taker is facing 

an exam using NM, it is by no means evident that the test taker has the cognitive skills to act 

consistently with the objective of maximizing the probability of passing. To illustrate the 

complexity a test taker may face, suppose that 13 points is the cutoff to pass an exam with 20 

questions. Moreover, suppose the student is 90 % confident of all 20 questions. To maximize 

the probability of passing in this case, the test taker should give answers only to 19 questions, 

even though the expected number of points increases if she gives answers to all questions. 

However, for all power calculations in this paper, we will assume the test taker always is capable 

to pick the optimal strategy of maximizing the probability of passing given the confidence level 

on the questions, although this might not always be the case in practice. Therefore, the 

assumption most likely means that the power calculations for the NM test situation provide an 

upper limit.  

Taking these three aspects into account, to find critical values and randomization probabilities 

for the NM test situation, we condition on a test taker having the distribution I in Table 4, where 

this distribution also coincides with her distribution of perceived probabilities, 𝑔𝑔(𝑝𝑝). We also 

stipulate that she has the skills to maximize the probability of passing given her perceived 

probability of correct answers to the questions. 

For a fair comparison of the two methods, we work with the same significance level 𝛼𝛼 = 0.25. 

For the NM method, the test taker, with the characteristics referred to above, has a maximum 

probability of 0.343 to score 13 points or higher and a maximum probability of 0.241 to score 
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14 points or higher. Thus, a critical value of 13 corresponds to a significance level of 0.343, 

while a critical value of 14 corresponds to 0.241. Randomization probabilities are now 

determined in a similar way to how we determined the corresponding probabilities for the NCS 

method. We consider the situation where the test taker meets a critical value of 13 with 

probability 𝑝𝑝13 and a critical value of 14 with probability 𝑝𝑝14 = 1 − 𝑝𝑝13, where  

𝑝𝑝13 = 0.25−0.241
0.343−0.241

. 

Now, the probability is 0.25 for such a test taker to pass the exam prior to the randomization. 

We get 

                            𝛼𝛼 =  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜃𝜃 = 0.75) = 𝑝𝑝13 ∙ 0.343 + (1 − 𝑝𝑝13) ∙ 0.241 = 0.25. 

 

The power for test takers with other characteristics is calculated accordingly. For example, 

suppose a test taker is 100 % confident of the answer to 70 % of the questions in the bank and 

50 % confident of the answers on the rest of the questions. This results in a value of 𝜃𝜃 equal to 

0.85. Also, suppose her perceived probabilities coincide with the corresponding true 

probabilities. Then, it can be shown that the probability to score 13 points or higher is 0.864, 

while the probability to score 14 points or higher is 0.755. Therefore, the power is given by 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜃𝜃 = 0.85) = 𝑝𝑝13 ∙ 0.864 + (1 − 𝑝𝑝13) ∙ 0.755 = 0.765. 

Thus, for this test taker, the NM method is preferred over the NCS method since the power is 

higher, 0,765 compared to 0,672. However, this is not always the case. In the next section we 

will examine and compare the two methods’ statistical power for different distributions of Π 

and under different assumptions about the deviation of 𝑔𝑔(𝑝𝑝) from 𝑓𝑓(𝜋𝜋).  

 

4. Results  

In this section we present the results from our comparison of statistical power. We divide the 

comparisons into two cases. First, it is assumed that perceived probabilities coincide with true 

probabilities. Second, we allow for a deviation of perceived and true probabilities.  
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4.1 Perceived probabilities coincide with true probabilities 

Consider Figure 1. Here, it is assumed that the two distributions 𝑔𝑔(𝑝𝑝) and 𝑓𝑓(𝜋𝜋) do not differ. 

The red curve shows the power of the NCS method or different values of 𝜃𝜃. For this method, 

the power for a given value of 𝜃𝜃 is not affected by the appearance of 𝑓𝑓(𝜋𝜋). The power increases 

in 𝜃𝜃, and takes the significance level 0.25 at 𝜃𝜃 = 0.75. The green curve shows the power for 

different values of 𝜃𝜃, where Π can take on values 0.5 and 1, only. Thus, for this situation the 

variance of Π is high, given the value of 𝜃𝜃. For this case, the NM method outperforms the NCS 

method. For 𝜃𝜃 > 0.75, i.e., values of 𝜃𝜃 representing a knowledge level that we believe is 

enough, the probability of passing is higher for the NM method, holding the significance level 

constant at 0.25 for both methods. Also, for low levels of knowledge the probability is lower to 

pass the test making use of the NM system. 

 

Figure 1. Power comparisons of NCS (red line) with NM (green line) based on an exam with 
20 true or false questions sampled from distributions of 𝛱𝛱 which only assumes values of 0.5 
and 1. Perceived probabilities coincide with true ones. The significance level is set at 0.25. 
 
The difference in power is especially high for values of 𝜃𝜃 around 0.85-0.90. This result can be 

intuitively explained as follows. A test taker with a value of 𝜃𝜃 equal to 0.875, where the 

difference seems to peak, has complete knowledge of 75 % of the questions in the bank. This 

means that the expected number of such questions the test taker will face on the exam is 15 and, 

using the NM method, it is likely that the randomized number of such questions will exceed the 
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critical values, 13 or 14. Thus, it is likely that the test taker will pass the exam, without 

depending on sheer chance for the answers to questions she is unfamiliar with, as she will refrain 

from answering to those types of questions to increase her probability of passing. For the NCS 

method the critical values are higher, 16 or 17 depending on the randomization. This means that 

the number of questions the test taker will know for sure on the exam, is most likely below the 

critical value. The risk is not negligible that the achieved score on the questions the test taker 

will guess at, is not high enough for her to pass the exam.  

Turning to Figure 2, the red curve is the same as in Figure 2 showing the power for the NCS-

method. The green curve shows the power of the NM method for the case when all questions 

in the bank have the same confidence level, for a given value of 𝜃𝜃. For example, a value of 𝜃𝜃 

equal to 0.75 means that the test taker is 75 % confident on all questions. Unlike the situation 

displayed in Figure 1, here the variance of Π is low, in this case zero, given different values of 

𝜃𝜃. The two power curves do not differ much in this case. The reason is that the test taker, also 

with the NM method, will answer pretty much all questions to maximize the probability of 

passing.4 The reason why the power of the NM method is even somewhat lower than the NCS 

method in this case is, as discussed above, that the critical values and the randomization 

probabilities are based on the case displayed in Figure 1, where the test taker knows a fraction 

of the questions with certainty.  

 

 
4 She will answer 19 questions if the critical value is 13, all 20 questions otherwise. 
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Figure 2. Power comparisons of NCS (red line) with NM (green line) based on an exam with 
20 true or false questions sampled from distributions of 𝛱𝛱 which each assumes one value, 
only. Perceived probabilities coincide with true ones. The significance level is set at 0.25. 
 
 

4.2 Perceived probabilities deviate from true probabilities 

 
 
Consider Figure 3 showing the effect on power of overrating one’s knowledge.  All curves 

correspond to a distribution where 𝑃𝑃 takes on the values 0.5 and 1, only. Thus, the test taker’s 

perception is either no knowledge or total knowledge. The red and green curves are the same 

as in Figure 2. These two curves serve as baselines and correspond to the case where the 

examinee correctly perceives that she knows the answer with certainty of a fraction of the 

questions in the bank, while having no knowledge of the rest.  

To illustrate the effect of overestimating one's knowledge two more curves are added to the 

figure, a blue and a yellow curve. These curves show the power of the NM method where the 

perceived probabilities deviate from the true ones. The blue and the yellow curves correspond 

to the cases where the test taker has a hit rate of 95 % and 90 %, respectively, on those questions 

that she thinks she knows the answer with certainty. This means we are considering a situation 

where the test taker overrates her knowledge. The drop in power is seen to be quite substantial, 

especially for values of 𝜃𝜃 in the range of 0.80 – 0.90. Under these circumstances the NM method 
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is outperformed by the NCS method. There is an intuitive explanation for this loss in power. 

For values of 𝜃𝜃 in this range, it is not unlikely that the number of questions the examinee thinks 

she knows will exceed the critical value, while the actual number does not. For such a situation, 

she will not give answers to the other questions and thereby fail the exam. In case the perceived 

probabilities are the same as the true ones, the examinee would have taken a chance on some 

of the other questions and thereby increased her chances to pass the exam. 

 

Figure 3. Power comparisons of NCS (red line) with NM (green, blue, and yellow lines). The red and 
green lines are based on the same situation displayed in Figure 1. The blue line corresponds to a 
situation where the examinee has a hit rate of 95 % on those questions that she thinks she can with 
certainty, while the yellow curve represents a hit rate of 90 % on the same questions. The significance 
level is set at 0.25. 
 
Figure 4 sheds light on the impact of underrating one’s knowledge. The red curve, as usual, 

represents the power for the NCS method and serves as a benchmark. The blue curve represents 

a situation where the test taker faces two types of questions, either questions she thinks she is 

95 % confident with or questions for which she has no knowledge of. Moreover, we assume the 

hit rate is actually 100 % on the first type of questions, meaning that she underrates her 

knowledge. A little surprise is that the blue curve in Figure 4 is identical to the green curve in 

Figure 3. Thus, a slight underestimation of one’s knowledge does not affect the power. The 

reason for this is that the test taker will continue to select the same questions to answer to 

maximize her probability of passing the exam, just as she would when her perceived 
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probabilities align with the true probabilities. When the underestimation becomes larger, the 

power decreases, as shown by the yellow curve. Here, the questions in the bank are either 

questions she thinks she is 90 % confident with or questions that she has no knowledge of. For 

the first type of questions, we still assume a hit rate of 100 %. How do we understand why the 

power decreases at most where 𝜃𝜃 is in the range 0.85 – 0.90? For such values of 𝜃𝜃, it is not an 

unlikely outcome that the number of questions the test taker thinks she knows the answer of 

with a confidence of 90 %, is considered too few, causing her not to refrain from taking a chance 

on the rest of the questions. However, the actual number of questions the test taker knows the 

answer of could be adequate for her to successfully pass the exam without needing to 

take chances on the other questions. Thus, underestimation of the knowledge might result in the 

examinee unnecessarily taking a chance on the questions she does not know and that gambling 

results in a worse outcome. The power is now close to the power of the NCS method.  

 

 

Figure 4. Power comparisons of NCS (red line) with NM (blue, and yellow lines) based on an exam 
with 20 true or false questions sampled from distributions of 𝛱𝛱 which only assumes values of 0.5 and 
1. The two NM curves both represent situations where the examinee faces two types of questions, 
either questions she thinks she is almost certain on, while having a hit rate of 100 % on, or questions 
where she has no knowledge of. Almost certain means 95 % for the blue curve and 90 % for the yellow 
one. The significance level is set at 0.25. 
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5. Conclusions and Discussion   

The paper presents a theoretical comparison of statistical power of the NCS and the NM 

methods used for true or false questions. The analysis is based on randomly drawing a certain 

number of questions, constituting an exam, from a large bank of questions. For the NCS method 

the test taker gets 1 point if the answer to the question is correct, 0 points otherwise. The NM 

method penalizes an incorrect answer with -1 point, while a correct answer is still rewarded 

with 1 point. Not answering the question results in 0 points. To compare the two methods, a 

knowledge parameter 𝜃𝜃 is defined as the average number of correct answers the test taker would 

have if she were to answer all questions in the bank.  

We compare the two methods in terms of statistical power, i.e., we examine which method, 

based on the total score on the exam, has the highest probability to correctly pass a test taker 

who has a sufficiently high value on 𝜃𝜃.  

As to the result of the comparison, we do not identify a clear winner. The choice of method 

relies on various factors. For the situation where the variance of Π is small, the two methods 

are about equal. The explanation is that for such a situation the test taker will give answers to 

more or less all of the questions on the exam for both methods. Things are getting more exciting 

when we consider the opposite situation where the variance of Π is large. For this case, the 

results differ depending on whether the examinee correctly perceives her confidence level or 

not. If the level is perceived correctly, the power for NM is higher than for NCS. However, if 

the examinee either overrates or underrates her confidence level, the power of NM typically 

falls. Similar negative effects of mis-calibration is also found in Budescu and Bo (2015). Which 

method has the highest power depends on the magnitude of mis-calibration. Also, underrating 

does not affect the power of NM as much as overrating.   

An assumption going through all the power calculations for NM is that the test taker has the 

ability to choose the strategy that maximizes the probability of passing the exam given her 

confidence ratings. It is not unlikely that this assumption is too strong in many situations, and 

it is possible that the test takers’ skills in this regard vary, and that this possible variation can 

have major effects on the probability of passing the exam. To illustrate, suppose that 14 points 

is the lower limit to pass an exam with 20 questions. Moreover, suppose the test taker is 90 % 

confident of 18 questions and 55 % confident of 2 questions. To maximize the probability of 

passing in this case, the test taker should give answers only to the 18 questions being 90 % 

confident of, even though the expected number of points increases if she gives answers to all 
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questions. The optimal strategy yields a probability of passing of 0.734 while answering all 20 

questions reduces the probability to 0.727. This is a small drop. However, things are getting 

worse if the test taker gives an answer only to 16 of those questions that she is most sure of. 

Then, the probability of passing diminishes to 0.514, which must be considered a not negligible 

drop.  

Thus, it would be interesting to investigate the test takers’ skills in this regard, both considering 

the average skill and the variation in skills among test takers. If the average skill is low, many 

test takers would be better off in terms of power with an NS exam. A large variation in skills 

would imply that some test takers would be disadvantaged by the NM method, while others 

would not, certainly this is a negative external effect of this method. Therefore, if this is the 

case, using the NM method would require a simple rule-of- thumb-guide to the test takers which 

questions to answer given their confidence levels. Developing such a guide is subject of future 

research.  

 

Appendix 

This Appendix presents the method used to find which questions to give answers to in the NM 

case and how to calculate the corresponding maximized probability of passing the exam. The 

method is based on the so-called Poisson binomial distribution being identified as part of a 

suitable probability model for the score on the exam.  

Before we explain how to tackle the maximization issue, we first outline the Poisson binomial 

distribution. This distribution represents the probability of a discrete random variable 𝑋𝑋, which 

is defined as the sum of 𝑛𝑛 independent Bernoulli trials, not necessarily identically distributed, 

with success probabilities 𝑝𝑝1,𝑝𝑝2, … ,𝑝𝑝𝑛𝑛. The Binomial distribution is a special case, all success 

probabilities being equal. Following Wang (1993), the probability mass function of 𝑋𝑋 is given 

by 

𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = � �𝑝𝑝𝑖𝑖 �(1 − 𝑝𝑝𝑗𝑗
𝑗𝑗∈𝐴𝐴𝑐𝑐𝑖𝑖∈𝐴𝐴𝐴𝐴∈𝐹𝐹𝑥𝑥

), 

where 𝐹𝐹𝑥𝑥 is the set of all subsets of 𝑥𝑥 integers that can be selected from {1, 2, … ,𝑛𝑛}, while 𝐴𝐴𝑐𝑐 is 

the complement of 𝐴𝐴. 
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Now, arrange the exam questions in order from highest to lowest based 

on the likelihood of providing the correct response. In addition, define 𝑝𝑝𝑖𝑖, 𝑖𝑖 = 1, 2, … , 20, to be 

the probability of giving a correct answer to the 𝑖𝑖:th question with respect to this order. Also, in 

line with this order, the student opts to respond to n of the 20 questions and not 

answer the others.5 Define the random variable  𝑋𝑋𝑛𝑛 to be the number of correct answers on the 

𝑛𝑛 questions. It follows a Poisson binomial distribution with success probabilities 𝑝𝑝1, …, 𝑝𝑝𝑛𝑛. 

The score on the exam, denoted by 𝑌𝑌𝑛𝑛, can now be expressed as 𝑌𝑌𝑛𝑛 = 𝑋𝑋𝑛𝑛 − (𝑛𝑛 − 𝑋𝑋𝑛𝑛) = 2𝑋𝑋𝑛𝑛 −

𝑛𝑛, where the first equality follows from the way the scoring system is designed with negative 

marking used.  

For a predetermined passing limit of 13 points, we can solve the maximization problem by 

calculating 𝑃𝑃(𝑌𝑌𝑛𝑛 ≥ 13) = 𝑃𝑃(𝑋𝑋𝑛𝑛 ≥
𝑛𝑛+13
2

) for various values of 𝑛𝑛 and choosing that value of 𝑛𝑛 

for which 𝑃𝑃(𝑌𝑌𝑛𝑛 ≥ 13) is maximized. Up to 8 potential values for 𝑛𝑛 should be examined 

because responding to fewer than 13 questions leads to a zero chance of passing 

the test. Utilizing the above probability mass function to determine these probabilities 

can be rather tedious. To sum over all 𝑛𝑛!
(𝑛𝑛−𝑥𝑥)!𝑥𝑥!

 elements in the set 𝐹𝐹𝑥𝑥 might even be infeasible in 

practice unless 𝑛𝑛 is small. Nonetheless, there are other, more efficient methods to determine 

the probabilities, such as employing a discrete Fourier transform (Hong, 2013), which 

is a method utilized in the r-package PoissonBinomial, version 1.2.7.  

  

 
5 If 𝑝𝑝𝑖𝑖 > 𝑝𝑝𝑗𝑗, it cannot be optimal to answer the 𝑗𝑗:th question and not to answer the 𝑖𝑖:th question. 
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