
Combination of Total organofluorine analysis (TOF) and total oxidizable precursor (TOP) assay

Jenny Jansson, Anna Kärrman, <u>Leo Yeung</u> MTM Research Centre, Örebro University, Örebro, Sweden, 70182

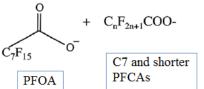
Photo: Foaming system malfunctions at Pearson airport hangar in 2015 Toronto.ctvnews.ca

TOF and TOP assay

Materials and Methods:

Two firefighting foam concentrates available on the Swedish market in 2014:

Reaction and cleanup



in 130 mL bottle; 85°C 6h
Modified SPE²

 $S_{2}O_{8}^{2-} + heat \rightarrow 2SO_{4}^{-}$ $SO_{4}^{-} + OH^{-} \rightarrow SO_{4}^{2-} + OH$ $C_{8}F_{17} \xrightarrow{R} OH^{\bullet} \xrightarrow{O} H^{\bullet} \xrightarrow{O} H^{\bullet}$

C8 Fluorotelomer

precursor

Instrumental Analyses • LC-MS/MS • CIC

¹Houtz and Sedlak 2012. Environmental science & technology, 46. 9342. ²ISO, 2009. ISO25101. Water quality — Determination of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) — Method for unfiltered samples using solid phase extraction and liquid chromatography/mass spectrometry.

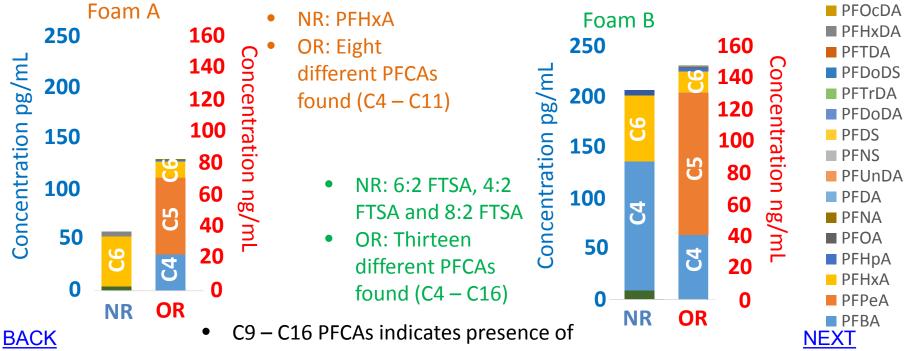
TOF analysis

Results and Discussion:

			ng-F/mL after 13,000x dilution		•
			Without oxidative	With oxidative	
			reaction	reaction	•
		Neutral/			
	Foam A	cationic	186	<50	•
		Anionic	<50	72	
	Foam B	Neutral/ cationic	916	<50	
	FUAILID	cationic	910	<50	
BACK		Anionic	<50	279	

- Without oxidative reaction:only neutral or cationiccompounds were detected
- LC-MS/MS → all PFASs unknown
- With oxidative conversion: only anionic compounds were detected
- Imbalance of fluorine

TOP assay


Results and Discussion:

ORELERO UNIVER Reported levels after 13,000x dilution NR/OR: Without/With oxidative reaction

8:2FTSA

6:2FTSA

4:2FTSA

other long-chain precursor compounds

Comparison of TOF and TOP assay

Summary and Conclusions:

- PFCA precursors were present in both foams and contributed to the unknown fraction of the TOF concentrations
- The identified unknown precursor compounds were converted from neutral/cationic to anionic after oxidation
- The base of both foam samples might be consisted of 6:2 fluorotelomer compounds
- After TOP assay, PFAS levels detected in Foam A made up for 37 45 % and 21 44 % in Foam B of the TOF concentrations
- Ultrashort chain PFASs (C2 and C3) are expected to be formed but not measured
- The mass balance after TOP shows that there still is unidentified PFASs present in the foam samples

Comparison of TOF and TOP assay

Acknowledgements:

Forskningsrådet Formas

Formas främjar framstående forskning för hållbar utveckling

Anna Kärrman anna.karrman@oru.se

NATUR VÅRDS VERKET

SWEDISH ENVIRONMENTAL PROTECTION AGENCY

Leo Yeung leo.yeung@oru.se

