This page in Swedish

Ulf Norinder

Title: Affiliated Professor School/office: School of Science and Technology

Email:

Phone: +46 19 301276

Room: B3110

Research subject

Research environments

Research projects

Research teams

Publications

Articles in journals |  Conference papers | 

Articles in journals

Alvarsson, J. , Arvidsson McShane, S. , Norinder, U. & Spjuth, O. (2020). Predicting with confidence: Using conformal prediction in drug discovery. Journal of Pharmaceutical Sciences.
Norinder, U. , Spjuth, O. & Svensson, F. (2020). Using Predicted Bioactivity Profiles to Improve Predictive Modeling. Journal of Chemical Information and Modeling, 60 (6), 2830-2837.
Norinder, U. , Jesús Naveja, J. , Lopez-Lopez, E. , Mucs, D. & Medina-Franco, J. L. (2019). Conformal prediction of HDAC inhibitors. SAR and QSAR in environmental research (Print), 30 (4), 265-277.
Honma, M. , Kitazawa, A. , Cayley, A. , Williams, R. V. , Barber, C. , Hanser, T. , Saiakhov, R. , Chakravarti, S. & et al. (2019). Improvement of quantitative structure-activity relationship (QSAR) tools for predicting Ames mutagenicity: outcomes of the Ames/QSAR International Challenge Project. Mutagenesis, 34 (1), 3-16.
Zhang, J. , Mucs, D. , Norinder, U. & Svensson, F. (2019). LightGBM: An Effective and Scalable Algorithm for Prediction of Chemical Toxicity–Application to the Tox21 and Mutagenicity Data Sets. Journal of Chemical Information and Modeling, 59 (10), 4150-4158.
Norinder, U. & Svensson, F. (2019). Multitask Modeling with Confidence Using Matrix Factorization and Conformal Prediction. Journal of Chemical Information and Modeling, 59 (4), 1598-1604.
Benfenati, E. , Golbamaki, A. , Raitano, G. , Roncaglioni, A. , Manganelli, S. , Lemke, F. , Norinder, U. , Lo Piparo, E. & et al. (2018). A large comparison of integrated SAR/QSAR models of the Ames test for mutagenicity($). SAR and QSAR in environmental research (Print), 29 (8), 591-611.
Jesús Naveja, J. , Norinder, U. , Mucs, D. , López-López, E. & Medina-Franco, J. L. (2018). Chemical space, diversity and activity landscape analysis of estrogen receptor binders. RSC Advances, 8 (67), 38229-38237.
Svensson, F. , Aniceto, N. , Norinder, U. , Cortes-Ciriano, I. , Spjuth, O. , Carlsson, L. & Bender, A. (2018). Conformal Regression for Quantitative Structure-Activity Relationship Modeling-Quantifying Prediction Uncertainty. Journal of Chemical Information and Modeling, 58 (5), 1132-1140.
Kensert, A. , Alvarsson, J. , Norinder, U. & Spjuth, O. (2018). Evaluating parameters for ligand-based modeling with random forest on sparse data sets. Journal of Cheminformatics, 10.
Lupu, D. , Varshney, M. K. , Mucs, D. , Inzunza, J. , Norinder, U. , Loghin, F. , Nalvarte, I. & Ruegg, J. (2018). Fluoxetine Affects Differentiation of Midbrain Dopaminergic Neurons In Vitro. Molecular Pharmacology, 94 (4), 1220-1231.
Svensson, F. , Afzal, A. M. , Norinder, U. & Bender, A. (2018). Maximizing gain in high-throughput screening using conformal prediction. Journal of Cheminformatics, 10 (1).
Ljunggren, S. A. , Helmfrid, I. , Norinder, U. , Fredriksson, M. , Wingren, G. , Karlsson, H. & Lindahl, M. (2017). Alterations in high-density lipoprotein proteome and function associated with persistent organic pollutants. Environment International, 98, 204-211.
Svensson, F. , Norinder, U. & Bender, A. (2017). Improving Screening Efficiency through Iterative Screening Using Docking and Conformal Prediction. Journal of Chemical Information and Modeling, 57 (3), 439-444.
Lindh, M. , Karlen, A. & Norinder, U. (2017). Predicting the Rate of Skin Penetration Using an Aggregated Conformal Prediction Framework. Molecular Pharmaceutics, 14 (5), 1571-1576.
Vandenberg, L. N. , Agerstrand, M. , Beronius, A. , Beausoleil, C. , Bergman, Å. , Bero, L. A. , Bornehag, C. , Boyer, C. S. & et al. (2016). A proposed framework for the systematic review and integrated assessment (SYRINA) of endocrine disrupting chemicals. Environmental health, 15 (1).
Norinder, U. , Rybacka, A. & Andersson, P. L. (2016). Conformal prediction to define applicability domain: A case study on predicting ER and AR binding. SAR and QSAR in environmental research (Print), 27 (4), 303-316.
Over, B. , Matsson, P. , Tyrchan, C. , Artursson, P. , Doak, B. C. , Foley, M. A. , Hilgendorf, C. , Johnston, S. E. & et al. (2016). Structural and conformational determinants of macrocycle cell permeability. Nature Chemical Biology, 12 (12), 1065-1074.
Eklund, M. , Norinder, U. , Boyer, S. & Carlsson, L. (2015). The application of conformal prediction to the drug discovery process. Annals of Mathematics and Artificial Intelligence, 74 (1-2), 117-132.
Eklund, M. , Norinder, U. , Boyer, S. & Carlsson, L. (2014). Choosing Feature Selection and Learning Algorithms in QSAR. Journal of Chemical Information and Modeling, 54 (3), 837-843.
Norinder, U. & Boström, H. (2013). Representing descriptors derived from multiple conformations as uncertain features for machine learning. Journal of Molecular Modeling, 19 (6), 2679-2685.

Conference papers

Linusson, H. , Norinder, U. , Boström, H. , Johansson, U. & Löfström, T. (2017). On the Calibration of Aggregated Conformal Predictors. In: Proceedings of Machine Learning Research. Paper presented at Conformal and Probabilistic Prediction and Applications, Stockholm Sweden 13-16 June, 2017.
Ahlberg, E. , Winiwarter, S. , Boström, H. , Linusson, H. , Löfström, T. , Norinder, U. , Johansson, U. , Engkvist, O. & et al. (2017). Using conformal prediction to prioritize compound synthesis in drug discovery. In: Alex Gammerman, Vladimir Vovk, Zhiyuan Luo, and Harris Papadopoulos, Proceedings of Machine Learning Research Volume 60: Conformal and Probabilistic Prediction and Applications, 13-16 June 2017, Stockholm, Sweden. Paper presented at The 6th Symposium on Conformal and Probabilistic Prediction with Applications, (COPA 2017), 13-16 June, 2017, Stockholm, Sweden (pp. 174-184). Stockholm:
Capuccini, M. , Carlsson, L. , Norinder, U. & Spjuth, O. (2015). Conformal prediction in Spark: Large-scale machine learning with confidence. In: Raicu, I.; Rana, O.; Buyya, R., Proc. 2nd International Symposium on Big Data Computing. Paper presented at International Symposium on Big Data Computing, December 7–10, Limassol, Cyprus, 2015. (pp. 61-67). IEEE Computer Society.