This page in Swedish

Research projects

RobLog - Cognitive Robot for Automation of Logistic Processes

About this project

Project information

Project status



Achim Lilienthal

Research subject

Research environments

Globalization causes an increasing transport of goods. Nowadays, most goods are shipped in containers and are transferred onto trucks for further transport. The containers are unloaded manually since they are nearly always packed chaotically, the variety of transported goods is high, and time requirements are strict. Unloading of containers is a strenuous task as goods have a weight up to 70 kg that poses health risks, which include the effects of pesticides and poisonous gases as well as injuries through unexpectedly falling objects. Human labor is hence a high cost factor combined with unhealthy working conditions, making automated solutions highly desirable.

Existing systems for automated unloading are restricted to specific scenarios and still have drawbacks in their flexibility, adaptability and robustness. A robotic system suited for any unloading task of containers requires a high amount of cognitive capabilities. RobLog aims at developing appropriate methods and technologies meeting the requirements to automate logistics processes.

The RobLog system has to be capable of 3D perception in a challenging scenario (high variability of objects, dynamic scene, deformable objects). The perceived environment has to be integrated into a 3D model in real-time. Grasping hypotheses, decisions and path-plans have to be generated and executed in an adaptive manner including obstacle avoidance and re-planning, if necessary. The actions must be grounded in a physical set-up capable of handling a large variety of potentially deformable items. Finally, there is the need to provide an interface suited for a human operator to provide high-level instructions to a multitude of systems operating at several unloading docks in parallel.

The result of the project, a cognitive robot system that unloads coffee bags autonomously, will be demonstrated at VOLLERS in Bremen.

Research funding bodies

  • EU Seventh Framework Programme (FP7)