Andrii Dmytryshyn
Befattning: Universitetslektor Organisation: Institutionen för naturvetenskap och teknikE-post: YW5kcmlpLmRteXRyeXNoeW47b3J1LnNl
Telefon: 019 303554
Rum: T2121
Om Andrii Dmytryshyn
Andriis forskningsintressen ligger inom matrisanalys och beräkningsmatematik. Innan han började som biträdande lektorvid Örebro universitet arbetade och studerade han i Umeå, Bordeaux (Frankrike), Padua (Italien) och Kiev (Ukraina).
Andrii tog emot SIAM Student Paper Prize 2015 (vilket är en av de stora utmärkelserna från Society for Industrial and Applied Mathematics). Han valdes ut som en av de 7 bästa kandidaterna för Householder Prize XX (Householder Prize är ett pris för den bästa avhandlingen i numerisk linjär algebra under en treårsperiod). Andrii var också LAA Early Career Speaker vid ILAS 2017 och inbjuden och plenary talare vid flera andra konferenser. Dmytryshyn är Docent i Matematik sedan 2022.
Som huvudansvarig forskare (PI) har Dmytryshyn erhållit ett antal bidrag från STINT, Umeå universitet, Kempestiftelserna, Stiftelsen Längmanska kulturfonden, SIAM, WASP (bidrag för en doktorand), Wenner-Grens stiftelser (bidrag för en postdoktor), Carl Tryggers stiftelse (bidrag för en postdoktor), Örebry universitet och Vetenskapsrådet (VR).
Handledning av forskningsprojekt vid Örebry universitet.
Doktorandprojekt (huvudhandledare):
- Sweta Das, sedan oktober 2022.
Postdoktorprojekt (huvudhandledare):
- Souad Mohaoui, sedan 2023.
- Massimiliano Fasi, 2020–2021.
Andrii undervisar kurser om numeriska metoder för differentialekvationer, tillämpad matematik, matematisk reglerteori, matrisberäkningar och fallstudier i beräkningsmatematik.
Forskningsprojekt
Pågående projekt
- Data completion problems for motion capture systems
- Eigenstructures of LOw-RAnk matrix polynomials (ELORA)
- Low-rank methods for systems of Sylvester-type matrix equations
- Stokastiska simuleringar av partiella differentialekvationer
Avslutade projekt
Forskargrupper
Publikationer
Artiklar i tidskrifter
- De Terán, F. , Dmytryshyn, A. & Dopico, F. M. (2024). Generic Eigenstructures of Hermitian Pencils. SIAM Journal on Matrix Analysis and Applications, 45 (1), 260-283. [BibTeX]
- Zhang, C. , Wang, Q. , Dmytryshyn, A. & He, Z. (2024). Investigation of some Sylvester-type quaternion matrix equations with multiple unknowns. Computational and Applied Mathematics, 43 (4). [BibTeX]
- Dmytryshyn, A. (2024). Schur decomposition of several matrices. Linear and multilinear algebra, 72 (8), 1346-1355. [BibTeX]
- Rousse, F. , Fasi, M. , Dmytryshyn, A. , Gulliksson, M. & Ögren, M. (2024). Simulations of quantum dynamics with fermionic phase-space representations using numerical matrix factorizations as stochastic gauges. Journal of Physics A: Mathematical and Theoretical, 57 (1). [BibTeX]
- Dmytryshyn, A. (2022). Recovering a perturbation of a matrix polynomial from a perturbation of its first companion linearization. BIT Numerical Mathematics (62), 69-88. [BibTeX]
- Dmytryshyn, A. , Fasi, M. & Gulliksson, M. (2022). The dynamical functional particle method for multi-term linear matrix equations. Applied Mathematics and Computation, 435. [BibTeX]
- De Teran, F. , Dmytryshyn, A. & Dopico, F. (2020). Generic symmetric matrix pencils with bounded rank. Journal of Spectral Theory, 10 (3), 905-926. [BibTeX]
- De Teran, F. , Dmytryshyn, A. & Dopico, F. M. (2020). Generic symmetric matrix polynomials with bounded rank and fixed odd grade. SIAM Journal on Matrix Analysis and Applications, 41 (3), 1033-1058. [BibTeX]
- Dmytryshyn, A. , Johansson, S. , Kågström, B. & Van Dooren, P. (2020). Geometry of Matrix Polynomial Spaces. Foundations of Computational Mathematics, 20 (3), 423-450. [BibTeX]
- Dmytryshyn, A. (2019). Miniversal deformations of pairs of symmetric matrices under congruence. Linear Algebra and its Applications, 568, 84-105. [BibTeX]
- Dmytryshyn, A. & Dopico, F. M. (2018). Generic skew-symmetric matrix polynomials with fixed rank and fixed odd grade. Linear Algebra and its Applications, 536, 1-18. [BibTeX]
- Dmytryshyn, A. , Johansson, S. & Kågström, B. (2017). Canonical structure transitions of system pencils. SIAM Journal on Matrix Analysis and Applications, 38 (4), 1249-1267. [BibTeX]
- Dmytryshyn, A. , Futorny, V. , Klymchuk, T. & Sergeichuk, V. V. (2017). Generalization of Roth's solvability criteria to systems of matrix equations. Linear Algebra and its Applications, 527, 294-302. [BibTeX]
- Dmytryshyn, A. & Dopico, F. M. (2017). Generic complete eigenstructures for sets of matrix polynomials with bounded rank and degree. Linear Algebra and its Applications, 535, 213-230. [BibTeX]
- Dmytryshyn, A. (2017). Structure preserving stratification of skew-symmetric matrix polynomials. Linear Algebra and its Applications, 532, 266-286. [BibTeX]
- Dmytryshyn, A. , Fonseca, C. & Rybalkina, T. (2016). Classification of pairs of linear mappings between two vector spaces and between their quotient space and subspace. Linear Algebra and its Applications, 509, 228-246. [BibTeX]
- Dmytryshyn, A. (2016). Miniversal deformations of pairs of skew-symmetric matrices under congruence. Linear Algebra and its Applications, 506, 506-534. [BibTeX]
- Dmytryshyn, A. , Futorny, V. , Kågström, B. , Klimenko, L. & Sergeichuk, V. (2015). Change of the congruence canonical form of 2-by-2 and 3-by-3 matrices under perturbations and bundles of matrices under congruence. Linear Algebra and its Applications, 469, 305-334. [BibTeX]
- Dmytryshyn, A. & Kågström, B. (2015). Coupled Sylvester-type Matrix Equations and Block Diagonalization. SIAM Journal on Matrix Analysis and Applications, 36 (2), 580-593. [BibTeX]
- Dmytryshyn, A. , Futorny, V. & Sergeichuk, V. (2014). Miniversal deformations of matrices under *congruence and reducing transformations. Linear Algebra and its Applications, 446 (April), 388-420. [BibTeX]
- Dmytryshyn, A. & Kågström, B. (2014). Orbit closure hierarchies of skew-symmetric matrix pencils. SIAM Journal on Matrix Analysis and Applications, 35 (4), 1429-1443. [BibTeX]
- Dmytryshyn, A. , Kågström, B. & Sergeichuk, V. V. (2014). Symmetric matrix pencils: codimension counts and the solution of a pair of matrix equations. The Electronic Journal of Linear Algebra, 27, 1-18. [BibTeX]
- Dmytryshyn, A. , Kågström, B. & Sergeichuk, V. V. (2013). Skew-symmetric matrix pencils: codimension counts and the solution of a pair of matrix equations. Linear Algebra and its Applications, 438 (8), 3375-3396. [BibTeX]
- Dmytryshyn, A. , Futorny, V. & Sergeichuk, V. (2012). Miniversal deformations of matrices of bilinear forms. Linear Algebra and its Applications, 436 (7), 2670-2700. [BibTeX]
- Belitskii, G. , Dmytryshyn, A. , Lipyanski, R. , Sergeichuk, V. & Tsurkov, A. (2009). Problems of classifying associative or Lie algebras over a field of characteristic not 2 and finite metabelian groups are wild. The Electronic Journal of Linear Algebra, 18, 516-529. [BibTeX]
Doktorsavhandlingar, sammanläggningar
- Dmytryshyn, A. (2015). Tools for Structured Matrix Computations: Stratifications and Coupled Sylvester Equations. (Doctoral dissertation). (Sammanläggning) Umeå: Umeå universitet. [BibTeX]
Konferensbidrag
- Ivanyuk-Skulskiy, B. , Kriukova, G. & Dmytryshyn, A. (2020). Geometric properties of adversarial images. I: Proceedings of the 2020 IEEE Third International Conference on Data Stream Mining & Processing (DSMP). Konferensbidrag vid 3rd International Conference on Data Stream Mining & Processing (DSMP), Lviv, Ukraine, August 21-25, 2020. (ss. 227-230). IEEE. [BibTeX]
Licentiatavhandlingar, sammanläggningar
- Dmytryshyn, A. (2014). Skew-symmetric matrix pencils: stratification theory and tools. Lic.-avh. (Sammanläggning) Umeå: Umeå universitet. [BibTeX]
Rapporter
- Dmytryshyn, A. & Dopico, F. M. (2016). Generic matrix polynomials with fixed rank and fixed degree. Umeå: Umeå Universitet (UMINF 16/19). [BibTeX]
- Dmytryshyn, A. , Johansson, S. & Kågström, B. (2015). Canonical structure transitions of system pencils. Umeå: Umeå universitet (UMINF 5). [BibTeX]
- Dmytryshyn, A. , Johansson, S. , Kågström, B. & Van Dooren, P. (2015). Geometry of spaces for matrix polynomial Fiedler linearizations. Umeå: Umeå universitet (UMINF 15/17). [BibTeX]
- Dmytryshyn, A. (2015). Structure preserving stratification of skew-symmetric matrix polynomials. Umeå: Umeå universitet. [BibTeX]
- Dmytryshyn, A. & Kågström, B. (2014). Orbit closure hierarchies of skew-symmetric matrix pencils. Umeå: Umeå universitet (UMINF 14/02). [BibTeX]
- Dmytryshyn, A. , Johansson, S. & Kågström, B. (2013). Codimension computations of congruence orbits of matrices, symmetric and skew-symmetric matrix pencils using Matlab. Umeå: Umeå Universitet (UMINF 13/18). [BibTeX]